• Barker, D. M., , Huang W. , , Guo Y.-R. , , Bourgeois A. J. , , and Xiao Q. N. , 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., , Thépaut J.-N. , , and Hollingsworth A. , 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., , and Thépaut J.-N. , 2001: Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-France. Mon. Wea. Rev., 129, 20892102, doi:10.1175/1520-0493(2001)129<2089:IOTDFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., , Tanguay M. , , Laroche S. , , and Pellerin S. , 2007: Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada. Mon. Wea. Rev., 135, 23392364, doi:10.1175/MWR3394.1.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., , and Zhang F. , 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, doi:10.1175/MWR-D-12-00274.1.

    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., , Huang X.-Y. , , Yang X. , , Mogensen K. , , Lindskog M. , , Vignes O. , , Wilhelmsson T. , , and Thorsteinsson S. , 2012: Four-dimensional variational data assimilation for a limited area model. Tellus, 64A, 14985, doi:10.3402/tellusa.v64i0.14985.

    • Search Google Scholar
    • Export Citation
  • Honda, Y., , Nishijima M. , , Koizumi K. , , Ohta Y. , , Tamiya K. , , Kawabata T. , , and Tsuyuki T. , 2005: A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 131, 34653475, doi:10.1256/qj.05.132.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Noh Y. , , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., , Yang X. , , Gustafsson N. , , Mogensen K. , , and Lindskog M. , 2002: Four-dimensional variational data assimilation for a limited area model. HIRLAM Tech. Rep. 57, 41 pp. [Available from SMHI, S-601 76 Norrkoping, Sweden.]

  • Huang, X.-Y., and et al. , 2009: Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev., 137, 299314, doi:10.1175/2008MWR2577.1.

    • Search Google Scholar
    • Export Citation
  • Järvinen, H., 1998: Observations and diagnostic tools for data assimilation. ECMWF Meteorological Training Course Lecture Series, 19 pp. [Available online at http://old.ecmwf.int/newsevents/training/lecture_notes/pdf_files/ASSIM/Diagtool.pdf.]

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawabata, T., , Seko H. , , Saito K. , , Kuroda T. , , Tamiya K. , , Tsuyuki T. , , Honda Y. , , and Wakazuki Y. , 2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensional variational data assimilation system. J. Meteor. Soc. Japan, 85, 255276, doi:10.2151/jmsj.85.255.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F., , and Talagrand O. , 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretic aspects. Tellus, 38A, 97110, doi:10.1111/j.1600-0870.1986.tb00459.x.

    • Search Google Scholar
    • Export Citation
  • Lewis, J., , and Derber J. , 1985: The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus, 37A, 309227, doi:10.1111/j.1600-0870.1985.tb00430.x.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., , and Rawlins F. , 2005: Why does 4D-Var beat 3D-Var? Quart. J. Roy. Meteor. Soc., 131, 32473257, doi:10.1256/qj.05.85.

  • Munsell, E. B., , and Zhang F. , 2014: Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler observations. J. Adv. Model. Earth Syst., 6, 3858, doi:10.1002/2013MS000297.

    • Search Google Scholar
    • Export Citation
  • Navon, I. M., , Zou X. , , Derber J. , , and Sela J. , 1992: Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Wea. Rev., 120, 14331446, doi:10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., , and Derber J. C. , 1992: The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., , and Zhang F. , 2014: Intercomparison and coupling of ensemble and four-dimensional variational data assimilation methods for the analysis and forecasting of Hurricane Karl (2010). Mon. Wea. Rev., 142, 3347–3364, doi:10.1175/MWR-D-13-00394.1.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., , Järvinen H. , , Klinker E. , , Mahfouf J.-F. , , and Simmons A. , 2000: The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 11431170, doi:10.1002/qj.49712656415.

    • Search Google Scholar
    • Export Citation
  • Rawlins, F., , Ballard S. P. , , Bovis K. J. , , Clayton A. M. , , Li D. , , Inverarity G. W. , , Lorenc A. C. , , and Payne T. J. , 2007: The Met Office global four-dimensional data assimilation system. Quart. J. Roy. Meteor. Soc., 133, 347362, doi:10.1002/qj.32.

    • Search Google Scholar
    • Export Citation
  • Rosmond, T., , and Xu L. , 2006: Development of NAVDAS-AR: Non-linear formulation and outer loop tests. Tellus, 58A, 4558, doi:10.1111/j.1600-0870.2006.00148.x.

    • Search Google Scholar
    • Export Citation
  • Ruggiero, F. H., , Michalakes J. , , Nehrkorn T. , , Modica G. D. , , and Zou X. , 2006: Development and tests of a new distributed-memory MM5 adjoint. J. Atmos. Oceanic Technol., 23, 424436, doi:10.1175/JTECH1862.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Sun, J., , and Crook N. A. , 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takeuchi, Y., and et al. , 2013: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Japan Meteorological Agency Tech. Rep., 188 pp. [Available online at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/index.htm.]

  • Tanguay, M., , Luc F. , , Lapalme E. , , and Lajoie M. , 2012: Four-dimensional variational data assimilation for the Canadian Regional Deterministic Prediction System. Mon. Wea. Rev., 140, 15171538, doi:10.1175/MWR-D-11-00160.1.

    • Search Google Scholar
    • Export Citation
  • Trémolet, Y., 2007: Incremental 4D-Var convergence study. Tellus, 59A, 706718, doi:10.1111/j.1600-0870.2007.00271.x.

  • Veersé, F., , and Thépaut J.-N. , 1998: Multi-truncation incremental approach for four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 124, 18891908, doi:10.1002/qj.49712455006.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., , and Zhang F. , 2014: The impact of reconnaissance data on hurricane intensity forecasts with a cycling WRF-EnKF system. 18th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Atlanta, GA, Amer. Meteor. Soc., 8.3. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper240719.html.]

  • Xiao, Q., and et al. , 2008: Application of an adiabatic WRF adjoint to the investigation of the May 2004 McMurdo, Antarctica, severe wind event. Mon. Wea. Rev., 136, 36963713, doi:10.1175/2008MWR2235.1.

    • Search Google Scholar
    • Export Citation
  • Xu, L., , Rosmond T. , , and Daley R. , 2005: Development of NAVDAS-AR: Formulation and initial tests of the linear problem. Tellus, 57A, 546559, doi:10.1111/j.1600-0870.2005.00123.x.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , and Huang X.-Y. , 2013: Development of GSI-based WRF 4D-Var system. 17th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Austin, TX, Amer. Meteor. Soc., 4A.2. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper217182.html.]

  • Zhang, X., , Huang X.-Y. , , and Gustafsson N. , 2011: Control of lateral boundary conditions in WRF 4D-Var. Ninth Int. Workshop on Adjoint Model Applications in Dynamic Meteorology, Cefalu, Sicily, Italy, NASA GMAO. [Available online at http://gmao.gsfc.nasa.gov/events/adjoint_workshop-9/presentations/Zhang.pdf.]

  • Zhang, X., , Huang X.-Y. , , and Pan N. , 2013: Development of the upgraded tangent linear and adjoint of the Weather Research and Forecasting (WRF) Model. J. Atmos. Oceanic Technol., 30, 1180–1188, doi:10.1175/JTECH-D-12-00213.1.

    • Search Google Scholar
    • Export Citation
  • Zou, X., , Kuo Y.-H. , , and Guo Y.-R. , 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model Mon. Wea. Rev.,123, 22292249, doi:10.1175/1520-0493(1995)123<2229:AOARRU>2.0.CO;2.

  • Zou, X., , Vandenberghe F. , , Pondeca M. , , and Kuo Y.-H. , 1997: Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Tech. Note NCAR/TN-435+STR, 110 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307-3000.]

  • Zupanski, M., 1993: Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment. Mon. Wea. Rev., 121, 23962408, doi:10.1175/1520-0493(1993)121<2396:RFDVDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., , Zupanski D. , , Vukicevic T. , , Eis K. , , and Haar T. V. , 2005: CIRA/CSU four-dimensional variational data assimilation system. Mon. Wea. Rev., 133, 829843, doi:10.1175/MWR2891.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 6
PDF Downloads 44 44 9

Development of an Efficient Regional Four-Dimensional Variational Data Assimilation System for WRF

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
  • | 3 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This paper presents the development of a single executable four-dimensional variational data assimilation (4D-Var) system based on the Weather Research and Forecasting (WRF) Model through coupling the variational data assimilation algorithm (WRF-VAR) with the newly developed WRF tangent linear and adjoint model (WRFPLUS). Compared to the predecessor Multiple Program Multiple Data version, the new WRF 4D-Var system achieves major improvements in that all processing cores are able to participate in the computation and all information exchanges between WRF-VAR and WRFPLUS are moved directly from disk to memory. The single executable 4D-Var system demonstrates desirable acceleration and scalability in terms of the computational performance, as demonstrated through a series of benchmarking data assimilation experiments carried out over a continental U.S. domain. To take into account the nonlinear processes with the linearized minimization algorithm and to further decrease the computational cost of the 4D-Var minimization, a multi-incremental minimization that uses multiple horizontal resolutions for the inner loop has been developed. The method calculates the innovations with a high-resolution grid and minimizes the cost function with a lower-resolution grid. The details regarding the transition between the high-resolution outer loop and the low-resolution inner loop are introduced. Performance of the multi-incremental configuration is found to be comparable to that with the full-resolution 4D-Var in terms of 24-h forecast accuracy in the week-long analysis and forecast experiment over the continental U.S. domain. Moreover, the capability of the newly developed multi-incremental 4D-Var system is further demonstrated in the convection-permitting analysis and forecast experiment for Hurricane Sandy (2012), which was hardly computationally feasible with the predecessor WRF 4D-Var system.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Xin Zhang, MMM, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: xinzhang@ucar.edu

Abstract

This paper presents the development of a single executable four-dimensional variational data assimilation (4D-Var) system based on the Weather Research and Forecasting (WRF) Model through coupling the variational data assimilation algorithm (WRF-VAR) with the newly developed WRF tangent linear and adjoint model (WRFPLUS). Compared to the predecessor Multiple Program Multiple Data version, the new WRF 4D-Var system achieves major improvements in that all processing cores are able to participate in the computation and all information exchanges between WRF-VAR and WRFPLUS are moved directly from disk to memory. The single executable 4D-Var system demonstrates desirable acceleration and scalability in terms of the computational performance, as demonstrated through a series of benchmarking data assimilation experiments carried out over a continental U.S. domain. To take into account the nonlinear processes with the linearized minimization algorithm and to further decrease the computational cost of the 4D-Var minimization, a multi-incremental minimization that uses multiple horizontal resolutions for the inner loop has been developed. The method calculates the innovations with a high-resolution grid and minimizes the cost function with a lower-resolution grid. The details regarding the transition between the high-resolution outer loop and the low-resolution inner loop are introduced. Performance of the multi-incremental configuration is found to be comparable to that with the full-resolution 4D-Var in terms of 24-h forecast accuracy in the week-long analysis and forecast experiment over the continental U.S. domain. Moreover, the capability of the newly developed multi-incremental 4D-Var system is further demonstrated in the convection-permitting analysis and forecast experiment for Hurricane Sandy (2012), which was hardly computationally feasible with the predecessor WRF 4D-Var system.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Xin Zhang, MMM, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: xinzhang@ucar.edu
Save