• Agam, N., , and Berliner P. , 2006: Dew formation and water vapor adsorption in semi-arid environments—A review. J. Arid Environ., 65, 572590, doi:10.1016/j.jaridenv.2005.09.004.

    • Search Google Scholar
    • Export Citation
  • Barradas, V. L., , and Glez-Medellín M. G. , 1999: Dew and its effect on two heliophile understorey species of a tropical dry deciduous forest in Mexico. Int. J. Biometeor., 43, 17, doi:10.1007/s004840050109.

    • Search Google Scholar
    • Export Citation
  • Beysens, D., , Muselli M. , , Nikolayev V. , , Narhe R. , , and Milimouk I. , 2005: Measurement and modelling of dew in island, coastal and alpine areas. Atmos. Res., 73, 122, doi:10.1016/j.atmosres.2004.05.003.

    • Search Google Scholar
    • Export Citation
  • Calbó, J., , and Sabburg J. , 2008: Feature extraction from whole-sky ground-based images for cloud-type recognition. J. Atmos. Oceanic Technol., 25, 314, doi:10.1175/2007JTECHA959.1.

    • Search Google Scholar
    • Export Citation
  • Canny, J., 1986: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., 8, 679698, doi:10.1109/TPAMI.1986.4767851.

    • Search Google Scholar
    • Export Citation
  • China Meteorological Administration, 2007: Observations and records. Observation of Weather Phenomenon, Specifications for Surface Meteorological Observation, Vol. 4, China Meteorological Press, 1–3.

  • Cittadini, E. D., , de Ridder N. , , Peri P. L. , , and van Keulen H. , 2006: A method for assessing frost damage risk in sweet cherry orchards of South Patagonia. Agric. For. Meteor., 141, 235243, doi:10.1016/j.agrformet.2006.10.011.

    • Search Google Scholar
    • Export Citation
  • Cosh, M. H., , Kabela E. D. , , Hornbuckle B. , , Gleason M. L. , , Jackson T. J. , , and Prueger J. H. , 2009: Observations of dew amount using in situ and satellite measurements in an agricultural landscape. Agric. For. Meteor., 149, 10821086, doi:10.1016/j.agrformet.2009.01.004.

    • Search Google Scholar
    • Export Citation
  • Dalla Marta, A., , Magarey R. D. , , Martinelli L. , , and Orlandini S. , 2007: Leaf wetness duration in sunflower (Helianthus annuus): Analysis of observations, measurements and simulations. Eur. J. Agron., 26, 310316, doi:10.1016/j.eja.2006.11.002.

    • Search Google Scholar
    • Export Citation
  • Decagon Devices, 2009: Dielectric leaf wetness sensor: Operator’s manual. 20 pp. [Available online at http://manuals.decagon.com/Manuals/10386_Leaf%20Wetness%20Sensor_Web.pdf.]

  • Duvdevani, S., 1947: An optical method of dew estimation. Quart. J. Roy. Meteor. Soc., 73, 282296, doi:10.1002/qj.49707331705.

  • Duvdevani, S., 1964: Dew in Israel and its effect on plants. Soil Sci., 98, 1421, doi:10.1097/00010694-196407000-00004.

  • Guo, Z., , Zhang D. , , and Zhang D. , 2010: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process., 19, 16571663, doi:10.1109/TIP.2010.2044957.

    • Search Google Scholar
    • Export Citation
  • Heusinkveld, B., , Berkowicz S. , , Jacobs A. , , Hillen W. , , and Holtslag A. , 2008: A new remote optical wetness sensor and its applications. Agric. For. Meteor., 148, 580591, doi:10.1016/j.agrformet.2007.11.007.

    • Search Google Scholar
    • Export Citation
  • Hotelling, H., 1933: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol., 24, 417441, doi:10.1037/h0071325.

    • Search Google Scholar
    • Export Citation
  • Jacobs, A. F. G., , van Pul W. A. J. , , and van Dijken A. , 1990: Similarity moisture dew profiles within a corn canopy. J. Appl. Meteor., 29, 13001306, doi:10.1175/1520-0450(1990)029<1300:SMDPWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kabela, E. D., , Hornbuckle B. K. , , Cosh M. H. , , Anderson M. C. , , and Gleason M. L. , 2009: Dew frequency, duration, amount, and distribution in corn and soybean during SMEX05. Agric. For. Meteor., 149, 1124, doi:10.1016/j.agrformet.2008.07.002.

    • Search Google Scholar
    • Export Citation
  • Keerthi, S. S., , and Lin C.-J. , 2003: Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput., 15, 16671689, doi:10.1162/089976603321891855.

    • Search Google Scholar
    • Export Citation
  • Kidron, G. J., , Herrnstadt I. , , and Barzilay E. , 2002: The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. J. Arid Environ., 52, 517533, doi:10.1006/jare.2002.1014.

    • Search Google Scholar
    • Export Citation
  • Lazebnik, S., , Schmid C. , , and Ponce J. , 2006: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, A. Fitzgibbon, C. J. Taylor, and Y. LeCun, Eds., Vol. 2, IEEE Computer Society, 21692178, doi:10.1109/CVPR.2006.68.

  • Levenberg, K., 1944: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math., 2, 164168.

  • Malek, E., , McCurdy G. , , and Giles B. , 1999: Dew contribution to the annual water balances in semi-arid desert valleys. J. Arid Environ., 42, 7180, doi:10.1006/jare.1999.0506.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1957: Dew. Quart. J. Roy. Meteor. Soc., 83, 322341, doi:10.1002/qj.49708335706.

  • Moro, M., , Were A. , , Villagarcía L. , , Cantón Y. , , and Domingo F. , 2007: Dew measurement by eddy covariance and wetness sensor in a semiarid ecosystem of SE Spain. J. Hydrol., 335, 295302, doi:10.1016/j.jhydrol.2006.11.019.

    • Search Google Scholar
    • Export Citation
  • Nikolayev, V. S., , Sibille P. , , and Beysens D. A. , 1998: Coherent light transmission by a dew pattern. Opt. Commun., 150, 263269, doi:10.1016/S0030-4018(98)00051-0.

    • Search Google Scholar
    • Export Citation
  • Ojala, T., , Pietikainen M. , , and Maenpaa T. , 2002: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell., 24, 971987, doi:10.1109/TPAMI.2002.1017623.

    • Search Google Scholar
    • Export Citation
  • Prabha, T., , and Hoogenboom G. , 2008: Evaluation of the Weather Research and Forecasting model for two frost events. Comput. Electron. Agric., 64, 234247, doi:10.1016/j.compag.2008.05.019.

    • Search Google Scholar
    • Export Citation
  • Shank, D. B., , Hoogenboom G. , , and McClendon R. W. , 2008: Dewpoint temperature prediction using artificial neural networks. J. Appl. Meteor. Climatol., 47, 17571769, doi:10.1175/2007JAMC1693.1.

    • Search Google Scholar
    • Export Citation
  • Tait, A., , and Zheng X. , 2003: Mapping frost occurrence using satellite data. J. Appl. Meteor., 42, 193203, doi:10.1175/1520-0450(2003)042<0193:MFOUSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takenaka, N., , Soda H. , , Sato K. , , Terada H. , , Suzue T. , , Bandow H. , , and Maeda Y. , 2003: Difference in amounts and composition of dew from different types of dew collectors. Water Air Soil Pollut., 147, 5160, doi:10.1023/A:1024573405792.

    • Search Google Scholar
    • Export Citation
  • Wilson, T., , Bland W. , , and Norman J. , 1999: Measurement and simulation of dew accumulation and drying in a potato canopy. Agric. For. Meteor., 93, 111119, doi:10.1016/S0168-1923(98)00116-6.

    • Search Google Scholar
    • Export Citation
  • Zhu, L., , Cao Z. , , Zhuo W. , , and Yan R. , 2011: A method of frost observation based on intensity changing regularity simulation and texture analysis. MIPPR 2011: Pattern Recognition and Computer Vision, J. Roberts and J. Ma, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8004), 800400, doi:10.1117/12.901785.

  • Zhuo, W., , Cao Z. , , and Xiao Y. , 2014: Cloud classification of ground-based images using texture–structure features. J. Atmos. Oceanic Technol., 31, 7992, doi:10.1175/JTECH-D-13-00048.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 4
PDF Downloads 31 31 5

A New Dew and Frost Detection Sensor Based on Computer Vision

View More View Less
  • 1 School of Automation, Huazhong University of Science and Technology, Wuhan, China
  • | 2 Meteorological Observation Center, China Meteorological Administration, Beijing, China
© Get Permissions
Restricted access

Abstract

Many weather features such as precipitation and snow depth can be recorded using automatic surface observation systems. However, automatically observing dew and frost presents several problems. Many studies have used various wetness sensors and passive microwave devices to detect dew. Unfortunately, several of these sensors are complex, and only a few are capable of detecting frost. This paper proposes a novel method for indirectly detecting dew and frost based on computer vision. The setup is simple, inexpensive, and only requires images of several glass substrates near the underlying surface. Images taken during dew or frost formation exhibit distinct changes in hierarchical visual features. These changes are detected by tracking the variations of several low-level statistical features that are extracted from the images in time. Additionally, an effective texture analysis method is proposed to describe the morphology of frost. Field experiments were conducted at several weather stations in Beijing, China. The validation of the method for measuring the onset and duration of dew/frost on short grass shows that 1) the proposed computer-vision-based algorithm achieves an accuracy of approximately 90% in discriminating among dewy, frosty, and dry nights based on the hourly manual observations of the grass surface and 2) the algorithm is also capable of measuring the duration of dew and frost on grass with about 70% accuracy.

Corresponding author address: Zhiguo Cao, School of Automation, Huazhong University of Science and Technology, Room 916, Yifu Building, 1037 Luoyu Road, Wuhan 430074, China. E-mail: zgcao@mail.hust.edu.cn

Abstract

Many weather features such as precipitation and snow depth can be recorded using automatic surface observation systems. However, automatically observing dew and frost presents several problems. Many studies have used various wetness sensors and passive microwave devices to detect dew. Unfortunately, several of these sensors are complex, and only a few are capable of detecting frost. This paper proposes a novel method for indirectly detecting dew and frost based on computer vision. The setup is simple, inexpensive, and only requires images of several glass substrates near the underlying surface. Images taken during dew or frost formation exhibit distinct changes in hierarchical visual features. These changes are detected by tracking the variations of several low-level statistical features that are extracted from the images in time. Additionally, an effective texture analysis method is proposed to describe the morphology of frost. Field experiments were conducted at several weather stations in Beijing, China. The validation of the method for measuring the onset and duration of dew/frost on short grass shows that 1) the proposed computer-vision-based algorithm achieves an accuracy of approximately 90% in discriminating among dewy, frosty, and dry nights based on the hourly manual observations of the grass surface and 2) the algorithm is also capable of measuring the duration of dew and frost on grass with about 70% accuracy.

Corresponding author address: Zhiguo Cao, School of Automation, Huazhong University of Science and Technology, Room 916, Yifu Building, 1037 Luoyu Road, Wuhan 430074, China. E-mail: zgcao@mail.hust.edu.cn
Save