• Alvarez, A., , and Mourre B. , 2012a: Oceanographic field estimates from remote sensing and glider fleets. J. Atmos. Oceanic Technol., 29, 16571662, doi:10.1175/JTECH-D-12-00015.1.

    • Search Google Scholar
    • Export Citation
  • Alvarez, A., , and Mourre B. , 2012b: Optimum sampling designs for a glider–mooring observing network. J. Atmos. Oceanic Technol., 29, 601612, doi:10.1175/JTECH-D-11-00105.1.

    • Search Google Scholar
    • Export Citation
  • Brito, M. P., , and Griffiths G. , 2011: A Markov chain state transition approach to establishing critical phases for AUV reliability. IEEE J. Oceanic Eng., 36, 139149, doi:10.1109/JOE.2010.2083070.

    • Search Google Scholar
    • Export Citation
  • Brito, M. P., , Griffiths G. , , and Challenor P. , 2010: Risk analysis for autonomous underwater vehicle operations in extreme environments. Risk Anal., 30, 17711788, doi:10.1111/j.1539-6924.2010.01476.x.

    • Search Google Scholar
    • Export Citation
  • Brito, M. P., , Griffiths G. , , Ferguson J. , , Hopkin D. , , Mills R. , , Pederson R. , , and MacNeil E. , 2012: A behavioral probabilistic risk assessment framework for managing autonomous underwater vehicle deployments. J. Atmos. Oceanic Technol., 29, 16891703, doi:10.1175/JTECH-D-12-00005.1.

    • Search Google Scholar
    • Export Citation
  • Collett, D., 2003: Modelling Survival Data in Medical Data. Chapman & Hall/CRC, 391 pp.

  • Cox, D. R., 1972: Regression models and life-tables. J. Roy. Stat. Soc., 34B, 187220.

  • Curtin, T. B., , Bellingham J. G. , , Catipovic J. , , and Webb D. , 1993: Autonomous oceanographic sampling networks. Oceanography, 6, 8694.

  • Curtin, T. B., , Crimmins D. M. , , Curcio J. , , Benjamin M. , , and Roper C. , 2005: Autonomous underwater vehicles: Trends and transformations. Mar. Technol. Soc. J., 39, 6575, doi:10.4031/002533205787442521.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., , Osse T. J. , , Light R. D. , , Wen T. , , Lehman T. W. , , Sabin P. L. , , Ballard J. W. , , and Chiodi A. M. , 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436, doi:10.1109/48.972073.

    • Search Google Scholar
    • Export Citation
  • Griffiths, G., , Millard N. W. , , Mcphail S. D. , , Stevenson S. D. P. , , and Challenor P. G. , 2003: On the reliability of the Autosub autonomous underwater vehicle. Underwater Technol., 25, 175184, doi:10.3723/175605403783101612.

    • Search Google Scholar
    • Export Citation
  • Hátún, H. C., , Eriksen C. C. , , and Rhines P. B. , 2007: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., 37, 28382854, doi:10.1175/2007JPO3567.1.

    • Search Google Scholar
    • Export Citation
  • Hodges, B. A., , and Fratantoni D. M. , 2009: A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders. J. Geophys. Res., 114, C10020, doi:10.1029/2009JC005317.

    • Search Google Scholar
    • Export Citation
  • Kalbfleisch, J. D., , and Prentice R. L. , 1980: The Statistical Analysis of Failure Time Data. Wiley, 321 pp.

  • Kobayashi, T., , King B. , , and Shikama N. , 2009: An estimation of the average lifetime of the latest model of APEX floats. J. Oceanogr., 65, 8189, doi:10.1007/s10872-009-0008-x.

    • Search Google Scholar
    • Export Citation
  • Leonard, N. E., , Paley D. A. , , Davis R. E. , , Fratantoni D. M. , , Lekien F. , , and Zhang F. , 2010: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Rob., 27, 718740, doi:10.1002/rob.20366.

    • Search Google Scholar
    • Export Citation
  • L’Hévéder, B., , Mortier L. , , and Testor P. , 2013: A glider network design study for a synoptic view of the oceanic mesoscale variability. J. Atmos. Oceanic Technol., 30, 1472–1493, doi:10.1175/JTECH-D-12-00053.1.

    • Search Google Scholar
    • Export Citation
  • O’Connor, P. D. T., 2002: Practical Reliability Engineering. 4th ed. John Wiley & Sons Ltd., 513 pp.

  • Perry, M. J., , Sackmann B. S. , , Eriksen C. C. , , and Lee C. M. , 2008: Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast. Limnol. Oceanogr., 53, 21692179, doi:10.4319/lo.2008.53.5_part_2.2169.

    • Search Google Scholar
    • Export Citation
  • Podder, T. K., , Sibenac M. , , Thomas H. , , Kirkwood W. , , and Bellingham J. G. , 2004: Reliability growth of autonomous underwater vehicle-Dorado. Oceans ’04 MTS/IEEE: Techno-Ocean ’04; Bridges across the Oceans, Vol. 2, IEEE, 856–862.

  • Prentice, R. L., , and Kalbfleisch J. D. , 2002: The Statistical Analysis of Failure Time Data. Wiley, 432 pp.

  • Rudnick, D. L., , Davis R. E. , , Eriksen C. C. , , Fratantoni D. M. , , and Perry M. J. , 2004: Underwater gliders for ocean research. Mar. Technol. Soc. J., 38, 7384, doi:10.4031/002533204787522703.

    • Search Google Scholar
    • Export Citation
  • Sherman, J., , Davis R. E. , , Owens W. B. , , and Valdes J. , 2001: The autonomous underwater glider “Spray.” IEEE J. Oceanic Eng., 26, 437446, doi:10.1109/48.972076.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1989: The Slocum mission. Oceanography, 2, 2225, doi:10.5670/oceanog.1989.26.

  • Testor, P., and et al. , 2007: European gliding observatories (EGO). The Coriolis Newsletter, No. 4, Coriolis/Mercator, 11–12. [Available online at www.coriolis.eu.org/News-Events/Newsletters/Coriolis-4/.]

  • Todd, R. E., , Rudnick D. L. , , Davis R. E. , , and Ohman M. D. , 2011: Underwater gliders reveal rapid arrival of El Niño effects off California’s coast. Geophys. Res. Lett., 38, L03609, doi:10.1029/2010GL046376.

    • Search Google Scholar
    • Export Citation
  • Webb, D. C., , Simonetti P. J. , , and Jones P. J. C. P. , 2001: SLOCUM: An underwater glider propelled by environmental energy. IEEE J. Oceanic Eng., 26, 447452, doi:10.1109/48.972077.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 272 272 47
PDF Downloads 205 205 40

Underwater Glider Reliability and Implications for Survey Design

View More View Less
  • 1 National Oceanography Centre, Southampton, Hampshire, United Kingdom
  • | 2 Autonomous Analytics, Southampton, Hampshire, United Kingdom
© Get Permissions
Restricted access

Abstract

It has been 20 years since the concept of the Autonomous Ocean Sampling Network (AOSN) was first introduced. This vision has been brought closer to reality with the introduction of underwater gliders. While in terms of functionality the underwater glider has shown to be capable of meeting the AOSN vision, in terms of reliability there is no communitywide hard evidence on whether persistent presence is currently being achieved. This paper studies the reliability of underwater gliders in order to assess the feasibility of using these platforms for future AOSN. The data used are taken from nonunderwater glider developers, which consisted of 205 glider deployments by 12 European laboratories between 2008 and 2012. Risk profiles were calculated for two makes of deep underwater gliders; there is no statistically significant difference between them. Regardless of the make, the probability of a deep underwater glider surviving a 90-day mission without a premature mission end is approximately 0.5. The probability of a shallow underwater glider surviving a 30-day mission without a premature mission end is 0.59. This implies that to date factors other than the energy available are preventing underwater gliders from achieving their maximum capability. This reliability information was used to quantify the likelihood of two reported underwater glider surveys meeting the observation needs for a period of 6 months and to quantify the level of redundancy needed in order to increase the likelihood of meeting the observation needs.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Mario Brito, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton, Hampshire SO14 3ZH, United Kingdom. E-mail: mario.brito@noc.ac.uk

Abstract

It has been 20 years since the concept of the Autonomous Ocean Sampling Network (AOSN) was first introduced. This vision has been brought closer to reality with the introduction of underwater gliders. While in terms of functionality the underwater glider has shown to be capable of meeting the AOSN vision, in terms of reliability there is no communitywide hard evidence on whether persistent presence is currently being achieved. This paper studies the reliability of underwater gliders in order to assess the feasibility of using these platforms for future AOSN. The data used are taken from nonunderwater glider developers, which consisted of 205 glider deployments by 12 European laboratories between 2008 and 2012. Risk profiles were calculated for two makes of deep underwater gliders; there is no statistically significant difference between them. Regardless of the make, the probability of a deep underwater glider surviving a 90-day mission without a premature mission end is approximately 0.5. The probability of a shallow underwater glider surviving a 30-day mission without a premature mission end is 0.59. This implies that to date factors other than the energy available are preventing underwater gliders from achieving their maximum capability. This reliability information was used to quantify the likelihood of two reported underwater glider surveys meeting the observation needs for a period of 6 months and to quantify the level of redundancy needed in order to increase the likelihood of meeting the observation needs.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Mario Brito, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton, Hampshire SO14 3ZH, United Kingdom. E-mail: mario.brito@noc.ac.uk
Save