• Anthes, R. A., and et al. , 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, doi:10.1175/BAMS-89-3-313.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , Colman R. , , Kattsov V. M. , , Allan R. P. , , Bretherton C. S. , , Dufresne J. L. , , and Webb M. J. , 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Cardinali, C., 2013: Data assimilation: Observation influence diagnostic of a data assimilation system. ECMWF Lecture Notes, 22 pp. [Available online at http://old.ecmwf.int/newsevents/training/lecture_notes/pdf_files/ASSIM/ObservationInfluence.pdf.]

  • Evans, M., , Hastings N. , , and Peacock B. , 2000: Statistical Distributions. 3rd ed. Wiley, 248 pp.

  • Goff, J. A., , and Gratch S. , 1946: Low-pressure properties of water from −160 to 212°F. Transactions of the American Society of Heating and Ventilating Engineers, Vol. 52, ASHRAE, 95–122.

  • Hajj, G. A., , Kursinski E. R. , , Romans L. J. , , Bertiger W. I. , , and Leroy S. S. , 2002: A technical description of atmospheric sounding by GPS occultation. J. Atmos. Sol.-Terr. Phys., 64, 451469, doi:10.1016/S1364-6826(01)00114-6.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , and Larson K. , 2002: An important constraint on tropical cloud – climate feedback. Geophys. Res. Lett., 29, 1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , Holton J. R. , , and Fu Q. , 2001: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett., 28, 1969–1972, doi:10.1029/2000GL012833.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., , and Eyre J. R. , 2000: Retrieving temperature, water vapour and surface pressure information from refractive-index profiles derived by radio occultation: A simulation study. Quart. J. Roy. Meteor. Soc., 126, 16611683, doi:10.1002/qj.49712656606.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., , Kuo Y.-H. , , Schreiner W. , , and Zhou X. , 2010a: Using SI-traceable global positioning system radio occultation measurements for climate monitoring [in “State of the Climate in 2009”]. Bull. Amer. Meteor. Soc., 91 (7), S36S37.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., , Zhou X. , , Kuo Y.-H. , , Hunt D. , , and Wang J.-H. , 2010b: Global evaluation of radiosonde water vapor systematic biases using GPS radio occultation from COSMIC and ECMWF analysis. Remote Sens., 2, 13201330, doi:10.3390/rs2051320.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., and et al. , 2012: Reproducibility of GPS radio occultation data for climate monitoring: Profile‐to‐profile intercomparison of CHAMP climate records 2002 to 2008 from six data centers. J. Geophys. Res.,117, D18111, doi:10.1029/2012JD017665.

  • Houze, R. A., , and Betts A. K. , 1981: Convection in GATE. Rev. Geophys., 19, 541576, doi:10.1029/RG019i004p00541.

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., , and Trenberth K. E. , 2003: Modern global climate change. Science, 302, 17191723, doi:10.1126/science.1090228.

  • Kuo, Y. H., , Wee T. K. , , Sokolovskiy S. , , Rocken C. , , Schreiner W. , , Hunt D. , , and Anthes R. A. , 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, doi:10.2151/jmsj.2004.507.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , and Hajj G. A. , 2001: A comparison of water vapor derived from GPS occultations and global weather analyses. J. Geophys. Res., 106, 11131138, doi:10.1029/2000JD900421.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , Hajj G. A. , , Hardy K. R. , , Romans L. J. , , and Schofield J. T. , 1995: Observing tropospheric water vapor by radio occultation using the Global Positioning System. Geophys. Res. Lett., 22, 23652368, doi:10.1029/95GL02127.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , Hajj G. A. , , Schofield J. T. , , Linfield R. P. , , and Hardy K. R. , 1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res.,102, 23 429–23 465, doi:10.1029/97JD01569.

  • Kursinski, E. R., , Healy S. B. , , and Romans L. J. , 2000: Initial results of combining GPS occultations with ECMWF global analyses within a 1DVar framework. Earth Planets Space, 52, 885892, doi:10.1186/BF03352301.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., and et al. , 2012: Development and testing of the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS) cm and mm wavelength occultation instrument. Atmos. Meas. Tech., 5, 439456, doi:10.5194/amt-5-439-2012.

    • Search Google Scholar
    • Export Citation
  • Papoulis, A., 1965: Probability, Random Variables, and Stochastic Processes. 9th ed. McGraw-Hill, 583 pp.

  • Poli, P., , Healy S. B. , , and Dee D. P. , 2010: Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis. Quart. J. Roy. Meteor. Soc., 136, 19721990, doi:10.1002/qj.722.

    • Search Google Scholar
    • Export Citation
  • Rüeger, J. M., 2002: Refractive index formulae for radio waves. Proc. XXII Congress of the Int. Federation of Surveyors, Washington, D.C., International Federation of Surveyors, 13 pp. [Available online at http://www.fig.net/pub/fig_2002/js28/js28_rueger.pdf.]

  • Sherwood, S. C., , Kursinski E. R. , , and Read W. G. , 2006: A distribution law for free-tropospheric relative humidity. J. Climate, 19, 62676277, doi:10.1175/JCLI3978.1.

    • Search Google Scholar
    • Export Citation
  • Xie, F., , Wu D. L. , , Ao C. O. , , Kursinski E. R. , , Mannucci A. J. , , and Syndergaard S. , 2010: Super‐refraction effects on GPS radio occultation refractivity in marine boundary layers. Geophys. Res. Lett., 37, L11805, doi:10.1029/2010GL043299.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 3
PDF Downloads 40 40 4

A Method to Deconvolve Errors in GPS RO-Derived Water Vapor Histograms

View More View Less
  • 1 Moog Advanced Missions and Science, Golden, Colorado
© Get Permissions
Restricted access

Abstract

Water vapor is an important constituent in the earth’s atmosphere that must be understood to predict weather and climate. Water vapor is challenging to measure, and observations of water vapor must be as independent of weather and climate models as possible in order to assess and improve those models. When combined with independent atmospheric temperature estimates, GPS radio occultation (RO) refractivity profiles yield unique, all-weather, high-vertical-resolution, globally distributed profiles of tropospheric water vapor whose vertical extent is maximum at low latitudes. A method for retrieving water vapor, known as the direct method, combines GPS RO-derived refractivity with temperatures from global weather analyses. Unlike variational methods, the direct method does not use the water vapor estimates from analyses because of their potential systematic errors. While utilization of the direct method has been limited because it produces negative values, these unphysical negative values reveal unique information about errors. A deconvolution technique is presented here that uses the negative values to estimate and remove random errors in histograms of water vapor derived via the direct method. Results indicate direct method specific humidity errors at low latitudes range from 0.4 g kg−1 at 725 hPa to 0.14 g kg−1 near 350 hPa, which can be removed via deconvolution. The deconvolved histograms extend to about the 240-K level in the troposphere, corresponding to 10 km at low latitudes. Unlike the limited information of low-order statistical moments like means and variances, histograms capture the full range of variability, which opens a new window into water vapor behavior and increases understanding of processes at work in the hydrological cycle.

Corresponding author address: E. Robert Kursinski, Moog Advanced Missions and Science, 1113 Washington St., Suite 200, Golden, CO 80401. E-mail: rkursinski@moog.com

Abstract

Water vapor is an important constituent in the earth’s atmosphere that must be understood to predict weather and climate. Water vapor is challenging to measure, and observations of water vapor must be as independent of weather and climate models as possible in order to assess and improve those models. When combined with independent atmospheric temperature estimates, GPS radio occultation (RO) refractivity profiles yield unique, all-weather, high-vertical-resolution, globally distributed profiles of tropospheric water vapor whose vertical extent is maximum at low latitudes. A method for retrieving water vapor, known as the direct method, combines GPS RO-derived refractivity with temperatures from global weather analyses. Unlike variational methods, the direct method does not use the water vapor estimates from analyses because of their potential systematic errors. While utilization of the direct method has been limited because it produces negative values, these unphysical negative values reveal unique information about errors. A deconvolution technique is presented here that uses the negative values to estimate and remove random errors in histograms of water vapor derived via the direct method. Results indicate direct method specific humidity errors at low latitudes range from 0.4 g kg−1 at 725 hPa to 0.14 g kg−1 near 350 hPa, which can be removed via deconvolution. The deconvolved histograms extend to about the 240-K level in the troposphere, corresponding to 10 km at low latitudes. Unlike the limited information of low-order statistical moments like means and variances, histograms capture the full range of variability, which opens a new window into water vapor behavior and increases understanding of processes at work in the hydrological cycle.

Corresponding author address: E. Robert Kursinski, Moog Advanced Missions and Science, 1113 Washington St., Suite 200, Golden, CO 80401. E-mail: rkursinski@moog.com
Save