• Avramov, A., , and Harrington J. Y. , 2010: Influence of parameterized ice habit on simulated mixed phase Arctic clouds. J. Geophys. Res., 115, D03205, doi:10.1029/2009JD012108.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., , and Korolev A. , 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14, 12241229, doi:10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., , Issac G. A. , , McFarlane N. A. , , and Li J. , 2007: The sensitivity of the radiation budget in a climate simulation to neglecting the effect of small ice particles. J. Climate, 20, 35273541, doi:10.1175/JCLI4191.1.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., , and Francis P. N. , 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T., , Rossow W. B. , , and Zhang Y. , 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286, doi:10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1978: Cloud physics investigations by the University of Wyoming in HIPLEX 1977. Rep. AS 119, Dept. of Atmospheric Science, University of Wyoming, 320 pp.

  • Curry, J. A., 1995: Interactions among aerosols, clouds, and climate of the Arctic Ocean. Sci. Total Environ., 160–161, 777791, doi:10.1016/0048-9697(95)04411-S.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., , Ebert E. E. , , and Schramm J. L. , 1993: Impact of clouds on the surface radiation balance of the Arctic Ocean. Meteor. Atmos. Phys., 51, 197217, doi:10.1007/BF01030494.

    • Search Google Scholar
    • Export Citation
  • Edenhofer, O., and et al. , Eds., 2014: Climate Change 2014: Mitigation of Climate Change. Cambridge University Press, 2108 pp.

  • Efron, B., , and Tibshirani R. J. , 1993: An Introduction to the Bootstrap. CRC Monographs on Statistics and Applied Probability, Vol. 57, Chapman and Hall, 456 pp.

  • Febvre, G., , Gayet J. F. , , Scherbakov V. , , Gourbeyre C. , , and Jourdan O. , 2012: Some effects of ice crystals on the FSSP measurements in mixed-phase clouds. Atmos. Chem. Phys., 12, 89638977, doi:10.5194/acp-12-8963-2012.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , Wood R. , , Brown P. R. A. , , Kaye P. H. , , Hirst E. , , Greenaway R. , , and Smith J. A. , 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20, 249261, doi:10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , Heymsfield A. J. , , and Bansemer A. , 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571370, doi:10.1175/JTECH1922.1.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., , Ackerman A. S. , , McFarquhar G. , , Zhang G. , , Poellot M. R. , , DeMott P. J. , , Prenni A. J. , , and Heymsfield A. J. , 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.

    • Search Google Scholar
    • Export Citation
  • Fugal, J. P., , and Shaw R. A. , 2009: Cloud particle size distributions measured with an airborne digital in-line holographic instrument. Atmos. Meas. Tech., 2, 259271, doi:10.5194/amt-2-259-2009.

    • Search Google Scholar
    • Export Citation
  • Fugal, J. P., , Shaw R. A. , , Saw E. W. , , and Sergeyev A. V. , 2004: Airborne digital holographic system for cloud particle measurements. Appl. Opt., 43, 59875995, doi:10.1364/AO.43.005987.

    • Search Google Scholar
    • Export Citation
  • Fugal, J. P., , Schulz T. J. , , and Shaw R. A. , 2009: Practical methods for automated reconstruction and characterization of particles in digital in-line holograms. Meas. Sci. Technol.,20, 075501, doi:10.1088/0957-0233/20/7/075501.

  • Gardiner, B. A., , and Hallett J. , 1985: Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles. J. Atmos. Oceanic Technol., 2, 171180, doi:10.1175/1520-0426(1985)002<0171:DOICFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gayet, J., , Febvre G. , , and Larsen H. , 1996: The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol., 13, 13001310, doi:10.1175/1520-0426(1996)013<1300:TROTPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., 2003: Measurement in the atmosphere. Handbook of Weather, Climate, and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements, T. D. Potter and B. R. Colman, Eds., John Wiley and Sons, 711–720.

  • Harrington, J. Y., , and Olsson P. Q. , 2001: On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics. J. Geophys. Res., 106, 27 47327 484, doi:10.1029/2000JD000236.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., , Reisin T. , , Cotton W. R. , , and Kreidenweis S. M. , 1999: Cloud resolving simulations of Arctic stratus: Part II: Transition-season clouds. Atmos. Res., 51, 4575, doi:10.1016/S0169-8095(98)00098-2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , Ockert-Bell M. E. , , and Michelsen M. L. , 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2007: On measurements of small ice particles in clouds. Geophys. Res. Lett., 34, L23812, doi:10.1029/2007GL030951.

  • Heymsfield, A. J., , and Parrish J. L. , 1978: A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteor., 17, 15661572, doi:10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and Miloshevich L. M. , 1991: Limit to greenhouse warming? Nature, 351, 1415, doi:10.1038/351014a0.

  • Holroyd, E. W., 1987: Some techniques and uses of 2D-C habit classification for snow particles. J. Atmos. Oceanic Technol., 4, 498511, doi:10.1175/1520-0426(1987)004<0498:STAUOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and et al. , 2012: The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, doi:10.1029/2012JD017668.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., , and Klein S. A. , 1999: The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model. Quart. J. Roy. Meteor. Soc., 125, 941965, doi:10.1002/qj.49712555510.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and et al. , 2009: On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys., 9, 55195537, doi:10.5194/acp-9-5519-2009.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 2007: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations. J. Atmos. Oceanic Technol., 24, 376389, doi:10.1175/JTECH1980.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , and Isaac G. A. , 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Technol., 22, 528542, doi:10.1175/JTECH1720.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , Strapp J. W. , , and Isaac G. A. , 1998: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15, 708720, doi:10.1175/1520-0426(1998)015<0708:EOTAOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , Emery E. F. , , Strapp J. W. , , Cober S. G. , , Isaac G. A. , , Wasey M. , , and Marcotte D. , 2011: Small ice particles in tropospheric clouds: Fact or artifact? Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , Emery E. F. , , and Creelman K. , 2013a: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690708, doi:10.1175/JTECH-D-12-00142.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , Emery E. F. , , Strapp J. W. , , Cover S. G. , , and Isaac G. A. , 2013b: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 25272553, doi:10.1175/JTECH-D-13-00115.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, doi:10.5194/amt-4-1361-2011.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and Heymsfield A. J. , 1997: Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX. J. Atmos. Sci., 54, 21872200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , Heymsfield A. J. , , Macke A. , , Iaquinta J. , , and Aulenbach S. M. , 1999: Use of observed ice crystal sizes and shapes to calculating mean-scattering properties and multi-spectral radiances: CEPEX 4 April 1993 case study. J. Geophys. Res., 104, 31 76331 779, doi:10.1029/1999JD900802.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , Iacobellis S. , , and Somerville R. C. J. , 2003: SCM simulations of tropical ice clouds using observationally based parameterizations of microphysics. J. Climate, 16, 16431664, doi:10.1175/1520-0442(2003)016<1643:SSOTIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , Um J. , , Freer M. , , Baumgardner D. , , Kok G. L. , , and Mace G. G. , 2007a: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , Zhang G. , , Poellot M. R. , , Kok G. L. , , McCoy R. , , Tooman T. , , and Heymsfield A. J. , 2007b: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 112, D24201, doi:10.1029/2007JD008633.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , Schmid B. , , Korolev A. , , Ogren J. A. , , Russell P. B. , , Tomlinson J. , , Turner D. D. , , and Wiscombe W. , 2011: Airborne instrumentation needs for climate and atmospheric research. Bull. Amer. Meteor. Soc., 92, 11931196, doi:10.1175/2011BAMS3180.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , Rasch P. , , Ivanova D. , , McFarquhar G. , , and Nousiainen T. , 2008: Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett., 35, L09806, doi:10.1029/2008GL033552.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and et al. , 2011: Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. J. Adv. Model. Earth Syst.,3, M06003, doi:10.1029/2011MS000066.

  • Morrison, H., , de Boer G. , , Feingold G. , , Harrington J. , , Shupe M. D. , , and Sulia K. , 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., , and Ramanathan V. , 1989: Solar absorption by cirrus clouds and the maintenance of the tropical upper troposphere thermal structure. J. Atmos. Sci., 46, 22932310, doi:10.1175/1520-0469(1989)046<2293:SABCCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., , and Collins W. , 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732, doi:10.1038/351027a0.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., , Piani C. , , Ingram W. J. , , Stone D. A. , , and Allen M. R. , 2008: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30, 175190, doi:10.1007/s00382-007-0280-7.

    • Search Google Scholar
    • Export Citation
  • Saw, E., , Shaw R. A. , , Salazar J. P. L. C. , , and Collins L. R. , 2012: Spatial clustering of polydisperse inertial particles in turbulence: II. Comparing simulation with experiment. New J. Phys., 14, 105031, doi:10.1088/1367-2630/14/10/105031.

    • Search Google Scholar
    • Export Citation
  • Siebert, S., , Gerashchenko S. , , Gylfason A. , , Lehmann K. , , Collins L. R. , , Shaw R. A. , , and Warhaft Z. , 2010: Towards understanding the role of turbulence on droplets in clouds: In situ and laboratory measurements. Atmos. Res., 97, 426437, doi:10.1016/j.atmosres.2010.05.007.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., , Shupe M. D. , , Persson P. O. G. , , and Morrison H. , 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys. Discuss., 11, 13 46913 524, doi:10.5194/acpd-11-13469-2011.

    • Search Google Scholar
    • Export Citation
  • Spuler, S. M., , and Fugal J. , 2011: Design of a digital, in-line, holographic imaging system for airborne measurement of clouds. Appl. Opt., 50, 14051412, doi:10.1364/AO.50.001405.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W. J., , and Stephens G. L. , 1991: A theoretical and observational study of the radiative properties of cirrus: Results from FIRE 1986. J. Atmos. Sci., 48, 20442059, doi:10.1175/1520-0469(1991)048<2044:ATAOSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, doi:10.1175/JCLI-3243.1.

  • Stephens, G. L., , Tsay S. , , Stackhouse P. W. Jr., , and Flatau P. J. , 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Atmos. Sci., 47, 17421753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Um, J., , and McFarquhar G. M. , 2009: Single scattering properties of aggregates of plates. Quart. J. Roy. Meteor. Soc., 135, 291304, doi:10.1002/qj.378.

    • Search Google Scholar
    • Export Citation
  • Vidaurre, G., , and Hallett J. , 2009: Particle impact and breakup in aircraft measurement. J. Atmos. Oceanic Technol., 26, 972983, doi:10.1175/2008JTECHA1147.1.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., , Hahn C. J. , , London J. , , Chervin R. M. , , and Jenne R. L. , 1986: Global distribution of total cloud cover and cloud type amounts over land. NCAR Tech. Note NCAR/TN-273+STR, 29 pp. + 200 maps.

  • Wylie, D., , Jackson D. L. , , Menzel W. P. , , and Bates J. J. , 2005: Trends in global cloud cover in two decades of HIRS observations. J. Climate, 18, 30213031, doi:10.1175/JCLI3461.1.

    • Search Google Scholar
    • Export Citation
  • Yang, F., , Ovchinnikov M. , , and Shaw R. A. , 2013a: Minimalist model of ice microphysics in mixed-phase stratiform clouds. Geophys. Res. Lett., 40, 37563760, doi:10.1002/grl.50700.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , Bi L. , , Baum B. A. , , Liou K.-N. , , Kattawar G. W. , , Mishchenko M. I. , , and Cole B. , 2013b: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, doi:10.1175/JAS-D-12-039.1.

    • Search Google Scholar
    • Export Citation
  • Yoshida, R., , Okamoto H. , , Hagihara Y. , , and Ishimoto H. , 2010: Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio. J. Geophys. Res., 115, D00H32, doi:10.1029/2009JD012334.

    • Search Google Scholar
    • Export Citation
  • Zender, C. S., , and Kiehl J. T. , 1994: Radiative sensitivities of tropical anvils to small ice crystals. J. Geophys. Res., 99, 25 86925 880, doi:10.1029/94JD02090.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , Macke A. , , and Albers F. , 1999: Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing. Atmos. Res., 52, 5975, doi:10.1016/S0169-8095(99)00026-5.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., , Mace G. G. , , and Comstock J. M. , 2011: The occurrence of particle size distribution bimodality in midlatitude cirrus as inferred from ground-based remote sensing data. J. Atmos. Sci., 68, 11621177, doi:10.1175/2010JAS3354.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 62 18
PDF Downloads 56 56 10

An Assessment of the Impact of Antishattering Tips and Artifact Removal Techniques on Cloud Ice Size Distributions Measured by the 2D Cloud Probe

View More View Less
  • 1 * Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 Research Aviation Facility, National Center for Atmospheric Research, Broomfield, Colorado
  • | 3 Atmospheric Sciences Program, Michigan Technological University, Houghton, Michigan
  • | 4 Institute for Atmospheric Physics, Johannes Gutenberg University of Mainz, and Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 5 ** Cloud Physics and Severe Weather Research Section, Environment Canada, Toronto, Ontario, Canada
© Get Permissions
Restricted access

Abstract

Prior estimates of ice crystal size distributions derived from 2D cloud probes (2DCs) have been artificially amplified by small ice crystals generated from the shattering of large ice crystals on the probe tips. Although antishatter tips and algorithms exist, there is considerable uncertainty in their effectiveness. This paper examines differences in ice crystal size distributions from adjacent 2DCs with standard and antishatter tips, and processed with and without antishattering algorithms. The measurements were obtained from the National Research Council of Canada Convair-580 during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the National Center for Atmospheric Research C-130 during the 2011 Instrumentation Development and Education in Airborne Science (IDEAS-2011). The 2DC size distributions are compared with those from the Holographic Detector for Clouds (HOLODEC), which has antishatter tips and allows for identification of shattering through spatial statistics.

The ratio of the number concentration N of particles with maximum dimensions 125–500 μm from the 2DC with standard tips to that from the 2DC with modified tips was correlated with median mass diameter and perimeter divided by area, but not with airspeed, attack, and attitude angles. Antishatter tips and algorithms reduced N by up to a factor of 10 for IDEAS-2011 and ISDAC, but neither alone removed all artifacts. For the period with coincident data, both N from the HOLODEC and 2DC with modified tips are around 5 × 10−3 L−1 μm−1, suggesting that antishatter tips and algorithms combined remove artifacts from the 2DC for the conditions sampled during IDEAS-2011.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Robert Jackson, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: rjackso2@illinois.edu

Abstract

Prior estimates of ice crystal size distributions derived from 2D cloud probes (2DCs) have been artificially amplified by small ice crystals generated from the shattering of large ice crystals on the probe tips. Although antishatter tips and algorithms exist, there is considerable uncertainty in their effectiveness. This paper examines differences in ice crystal size distributions from adjacent 2DCs with standard and antishatter tips, and processed with and without antishattering algorithms. The measurements were obtained from the National Research Council of Canada Convair-580 during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the National Center for Atmospheric Research C-130 during the 2011 Instrumentation Development and Education in Airborne Science (IDEAS-2011). The 2DC size distributions are compared with those from the Holographic Detector for Clouds (HOLODEC), which has antishatter tips and allows for identification of shattering through spatial statistics.

The ratio of the number concentration N of particles with maximum dimensions 125–500 μm from the 2DC with standard tips to that from the 2DC with modified tips was correlated with median mass diameter and perimeter divided by area, but not with airspeed, attack, and attitude angles. Antishatter tips and algorithms reduced N by up to a factor of 10 for IDEAS-2011 and ISDAC, but neither alone removed all artifacts. For the period with coincident data, both N from the HOLODEC and 2DC with modified tips are around 5 × 10−3 L−1 μm−1, suggesting that antishatter tips and algorithms combined remove artifacts from the 2DC for the conditions sampled during IDEAS-2011.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Robert Jackson, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: rjackso2@illinois.edu
Save