• Becker, M., , Meyssignac B. , , Letetrel C. , , Llovel W. , , Cazenave A. , , and Delcroix T. , 2012: Sea level variations at tropical Pacific islands since 1950. Global Planet. Change, 80–81, 8598, doi:10.1016/j.gloplacha.2011.09.004.

    • Search Google Scholar
    • Export Citation
  • Bell, R. G., 2010: Tidal exceedances, storm tides and the effect of sea-level rise. Proc. 17th Congress of the Asia and Pacific Division of the Int. Association of Hydraulic Engineering and Research, Auckland, New Zealand, IAHR, 2b001.

  • Boak, E. H., , and Turner I. L. , 2005: Shoreline definition and detection: A review. J. Coastal Res., 21, 688703, doi:10.2112/03-0071.1.

    • Search Google Scholar
    • Export Citation
  • Boon, J. D., 2013: Secrets of the Tide: Tide and Tidal Current Analysis and Predictions, Storm Surges and Sea Level Trends. Elsevier, 224 pp.

  • Chowdhury, MD. R., , Chu P.-S. , , Schroeder T. , , and Colasacco N. , 2007: Seasonal sea-level forecasts by canonical correlation analysis—An operational scheme for the U.S.-affiliated Pacific Islands. Int. J. Climatol., 27, 13891402, doi:10.1002/joc.1474.

    • Search Google Scholar
    • Export Citation
  • Chu, P. S., , and Wang J. X. , 1998: Modeling return periods of tropical cyclone intensities in the vicinity of Hawaii. J. Appl. Meteor., 37, 951960, doi:10.1175/1520-0450(1998)037<0951:MRPOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., , Lorrey A. M. , , Knapp K. R. , , and Levinson D. H. , 2012: Development of an enhanced tropical cyclone tracks database for the southwest Pacific from 1840 to 2010. Int. J. Climatol., 32, 22402250, doi:10.1002/joc.2412.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and Erofeeva S. Y. , 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Foreman, M. G. G., , Cherniawsky J. Y. , , and Ballantyne V. A. , 2009: Versatile harmonic tidal analysis: Improvements and applications. J. Atmos. Oceanic Technol., 26, 806817, doi:10.1175/2008JTECHO615.1.

    • Search Google Scholar
    • Export Citation
  • Goring, D. G., 2008: Extracting long waves from tide-gauge records. J. Waterw. Port Coastal Ocean Eng., 134, 306312, doi:10.1061/(ASCE)0733-950X(2008)134:5(306).

    • Search Google Scholar
    • Export Citation
  • Goring, D. G., , Stephens S. A. , , Bell R. G. , , and Pearson C. P. , 2011: Estimation of extreme sea levels in a tide-dominated environment using short data records. J. Waterw. Port Coastal Ocean Eng., 137, 150159, doi:10.1061/(ASCE)WW.1943-5460.0000071.

    • Search Google Scholar
    • Export Citation
  • Hoeke, R. K., , McInnes K. L. , , Kruger J. C. , , McNaught R. J. , , Hunter J. R. , , and Smithers S. G. , 2013: Widespread inundation of Pacific islands triggered by distant-source wind-waves. Global Planet. Change, 108, 128138, doi:10.1016/j.gloplacha.2013.06.006.

    • Search Google Scholar
    • Export Citation
  • Jay, D. A., 2009: Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophys. Res. Lett., 36, L04603, doi:10.1029/2008GL036185.

    • Search Google Scholar
    • Export Citation
  • Lyard, F., , Lefevre F. , , Letellier T. , , and Francis O. , 2006: Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn., 56, 394415, doi:10.1007/s10236-006-0086-x.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., , Takanezawa T. , , and Ooe M. , 2000: Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr., 56, 567581, doi:10.1023/A:1011157212596.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., , Thompson P. R. , , and Lander M. , 2012: Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett., 39, L13602, doi:10.1029/2012GL052032.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., , Genz A. S. , , Kontoes C. P. , , and Marra J. J. , 2013: Annual maximum water levels from tide gauges: Contributing factors and geographic patterns. J. Geophys. Res. Oceans, 118, 25352546, doi:10.1002/jgrc.20173.

    • Search Google Scholar
    • Export Citation
  • Miles, E. R., , Spillman C. M. , , Church J. A. , , and McIntosh P. C. , 2014: Seasonal prediction of global sea level anomalies using an ocean–atmosphere dynamical model. Climate Dyn., 43, 2131–2145, doi:10.1007/s00382-013-2039-7.

    • Search Google Scholar
    • Export Citation
  • Müller, M., 2011: Rapid change in semi-diurnal tides in the North Atlantic since 1980. Geophys. Res. Lett., 38, L11602, doi:10.1029/2011GL047312.

    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., , and Cazenave A. , 2010: Sea-level rise and its impact on coastal zones. Science, 328, 15171520, doi:10.1126/science.1185782.

    • Search Google Scholar
    • Export Citation
  • Nurse, L., and et al. , 2014: Small islands. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Part B: Regional Aspects, V. R. Barros et al., Eds., Cambridge University Press, 1613–1654.

  • Pugh, D. T., 1987: Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists. John Wiley & Sons Ltd., 486 pp.

  • Pugh, D. T., 2004: Changing Sea Levels: Effects of Tides, Weather and Climate. Cambridge University Press, 280 pp.

  • Rasheed, A. S., , and Chua V. P. , 2014: Secular trends in tidal parameters along the coast of Japan. Atmos.–Ocean, 52, 155168, doi:10.1080/07055900.2014.886031.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 1999: A global ocean tide model from TOPEX/Poseidon altimetery: GOT99.2. NASA Tech. Memo. NASA/TM—1999-209478, 58 pp.

  • Sasaki, Y. N., , Minobe S. , , Schneider N. , , Kagimoto T. , , Nonaka M. , , and Sasaki H. , 2008: Decadal sea level variability in the South Pacific in a global eddy-resolving ocean model hindcast. J. Phys. Oceanogr., 38, 17311747, doi:10.1175/2007JPO3915.1.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 2002: Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes. Mon. Wea. Rev., 130, 590609, doi:10.1175/1520-0493(2002)130<0590:ETOSPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., , Cazenave A. , , Ponte R. M. , , and Tamisiea M. E. , 2013: Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci.,5, 21–46, doi:10.1146/annurev-marine-121211-172406.

  • Terry, J. P., , and Gienko G. , 2010: Climatological aspects of South Pacific tropical cyclones, based on analysis of the RSMC-Nadi (Fiji) regional archive. Climate Res., 42, 223233, doi:10.3354/cr00912.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., , McGregor S. , , and Jin F.-F. , 2010: Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J. Climate, 23, 44294437, doi:10.1175/2010JCLI3519.1.

    • Search Google Scholar
    • Export Citation
  • Walters, R. A., , Goring D. G. , , and Bell R. G. , 2001: Ocean tides around New Zealand. N. Z. J. Mar. Freshwater Res., 35, 567579, doi:10.1080/00288330.2001.9517023.

    • Search Google Scholar
    • Export Citation
  • Woodworth, P. L., 2010: A survey of recent changes in the main components of the ocean tide. Cont. Shelf Res., 30, 16801691, doi:10.1016/j.csr.2010.07.002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 2
PDF Downloads 28 28 2

High-Water Alerts from Coinciding High Astronomical Tide and High Mean Sea Level Anomaly in the Pacific Islands Region

View More View Less
  • 1 National Institute of Water and Atmospheric Research, Hillcrest, Hamilton, New Zealand
© Get Permissions
Restricted access

Abstract

A technique to produce high-water alerts from coinciding high astronomical tide and high mean sea level anomaly is demonstrated for the Pacific Islands region. Low-lying coastal margins are vulnerable to episodic inundation that often coincides with times of higher-than-normal high tides. Prior knowledge of the dates of the highest tides can assist with efforts to minimize the impacts of increased exposure to inundation. It is shown that the climate-driven mean sea level anomaly is an important component of total sea level elevation in the Pacific Islands region, which should be accounted for in medium-term (1–7 months) sea level forecasts. An empirical technique is applied to develop a mean sea level–adjusted high-water alert calendar that accounts for both sea level components and provides a practical tool to assist with coastal inundation hazard planning and management.

Corresponding author address: Scott A. Stephens, National Institute of Water and Atmospheric Research, P.O. Box 11-115, Hillcrest, Hamilton 3251, New Zealand. E-mail: scott.stephens@niwa.co.nz

Abstract

A technique to produce high-water alerts from coinciding high astronomical tide and high mean sea level anomaly is demonstrated for the Pacific Islands region. Low-lying coastal margins are vulnerable to episodic inundation that often coincides with times of higher-than-normal high tides. Prior knowledge of the dates of the highest tides can assist with efforts to minimize the impacts of increased exposure to inundation. It is shown that the climate-driven mean sea level anomaly is an important component of total sea level elevation in the Pacific Islands region, which should be accounted for in medium-term (1–7 months) sea level forecasts. An empirical technique is applied to develop a mean sea level–adjusted high-water alert calendar that accounts for both sea level components and provides a practical tool to assist with coastal inundation hazard planning and management.

Corresponding author address: Scott A. Stephens, National Institute of Water and Atmospheric Research, P.O. Box 11-115, Hillcrest, Hamilton 3251, New Zealand. E-mail: scott.stephens@niwa.co.nz
Save