• Artale, V., , Boffetta G. , , Celani A. , , Cencini M. , , and Vulpiani A. , 1997: Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Phys. Fluids, 9, 31623171, doi:10.1063/1.869433.

    • Search Google Scholar
    • Export Citation
  • Aurell, E., , Boffetta G. , , Crisanti A. , , Paladin G. , , and Vulpiani A. , 1997: Predictability in the large: An extension of the concept of Lyapunov exponent. J. Phys., 30A, doi:10.1088/0305-4470/30/1/003.

    • Search Google Scholar
    • Export Citation
  • Babiano, A., , Basdevant C. , , Le Roy P. , , and Sadourny R. , 1990: Relative dispersion in two-dimensional turbulence. J. Fluid Mech., 214, 535557, doi:10.1017/S0022112090000258.

    • Search Google Scholar
    • Export Citation
  • Badin, G., , Tandon A. , , and Mahadevan A. , 2011: Lateral mixing in the pycnocline by baroclinic mixed layer eddies. J. Phys. Oceanogr., 41, 20802101, doi:10.1175/JPO-D-11-05.1.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1952: Diffusion in a field of homogeneous turbulence. II. The relative motion of particles. Math. Proc. Cambridge Philos. Soc., 48, 345362, doi:10.1017/S0305004100027687.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1984: Relative dispersion: Local and nonlocal dynamics. J. Atmos. Sci., 41, 18811886, doi:10.1175/1520-0469(1984)041<1881:RDLAND>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berti, S., , Santos F. A. D. , , Lacorata G. , , and Vulpiani A. , 2011: Lagrangian drifter dispersion in the southwestern Atlantic Ocean. J. Phys. Oceanogr., 41, 16591672, doi:10.1175/2011JPO4541.1.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., , Ferrari R. , , and Fox-Kemper B. , 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Boffetta, G., , Celani A. , , Cencini M. , , Lacorata G. , , and Vulpiani A. , 2000: Nonasymptotic properties of transport and mixing. Chaos, 10, 50, doi:10.1063/1.166475.

    • Search Google Scholar
    • Export Citation
  • Capet, X., , McWilliams J. , , Molemaker M. , , and Shchepetkin A. , 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Carrier, M., , Ngodock H. , , Smith S. , , Muscarella P. , , Jacobs G. , , Özgökmen T. , , Haus B. , , and Lipphardt B. , 2014: Impact of ocean velocity observations inferred from Lagrangian drifter data using the NCOM-4DVAR. Mon. Wea. Rev., 142, 15091524, doi:10.1175/MWR-D-13-00236.1.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E., , Hurlburt H. , , Smedstad O. , , Halliwell G. , , Hogan P. , , Wallcraft A. , , and Bleck R. , 2006: Ocean prediction with the Hybrid Coordinate Ocean Model (HYCOM). Ocean Wea. Forecasting, 5, 413426, doi:10.1007/1-4020-4028-8_16.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., , Ferrari R. , , and Hallberg R. , 2008: Parameterization of mixed-layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., , and Poulain P. M. , 1996: Quality control and interpolations of WOCE-TOGA drifter data. J. Atmos. Oceanic Technol., 13, 900909, doi:10.1175/1520-0426(1996)013<0900:QCAIOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haza, A. C., , Poje A. , , Özgökmen T. M. , , and Martin P. , 2008: Relative dispersion from a high-resolution coastal model of the Adriatic Sea. Ocean Modell., 22, 4865, doi:10.1016/j.ocemod.2008.01.006.

    • Search Google Scholar
    • Export Citation
  • Haza, A. C., , Özgökmen T. M. , , Griffa A. , , Garraffo Z. D. , , and Piterbarg L. I. , 2012: Parametrization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models. Ocean Modell., 42, 3149, doi:10.1016/j.ocemod.2011.11.005.

    • Search Google Scholar
    • Export Citation
  • Kirwan, A. D. J., , and Chang M. S. , 1979: Effect of sampling rate and random position error on analysis of drifter data. J. Phys. Oceanogr., 9, 382387, doi:10.1175/1520-0485(1979)009<0382:EOSRAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, P., , and Lapeyre G. , 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, doi:10.1146/annurev.marine.010908.163704.

    • Search Google Scholar
    • Export Citation
  • Koszalka, I., , LaCasce J. H. , , and Orvik K. A. , 2009: Relative dispersion statistics in the Nordic Seas. J. Mar. Res., 67, 411433, doi:10.1357/002224009790741102.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, doi:10.1016/j.pocean.2008.02.002.

  • LaCasce, J. H., , and Ohlmann C. , 2003: Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res., 61, 285312, doi:10.1357/002224003322201205.

    • Search Google Scholar
    • Export Citation
  • Lacorata, G., , Aurell E. , , and Vulpiani A. , 2001: Drifter dispersion in the Adriatic Sea: Lagrangian data and chaotic model. Ann. Geophys., 19, 121129, doi:10.5194/angeo-19-121-2001.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., , and Pazos M. , 2007: Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, A. Griffa et al., Eds., Cambridge University Press, 39–67.

  • Lumpkin, R., , and Elipot S. , 2010: Surface drifter pair spreading in the North Atlantic. J. Geophys. Res.,115, C12017, doi:10.1029/2010JC006338.

  • Mahadevan, A., , and Tandon A. , 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, doi:10.1016/j.ocemod.2006.05.006.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J., 2008: Fluid dynamics at the margin of rotational control. Environ. Fluid Mech., 8, 441449, doi:10.1007/s10652-008-9081-8.

    • Search Google Scholar
    • Export Citation
  • Mensa, J., , Griffa A. , , Garraffo Z. , , Özgökmen T. , , Haza A. , , and Veneziani M. , 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, doi:10.1007/s10236-013-0633-1.

    • Search Google Scholar
    • Export Citation
  • Müller, P., , McWilliams J. , , and Molemaker M. , 2005: Routes to dissipation in the ocean: The two-dimensional/three-dimensional turbulence conundrum. Marine Turbulence: Theories, Observations, and Models; Results of the CARTUM Project, H. Z. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 397–405.

  • Ohlmann, J. C., , White P. F. , , Sybrandy A. L. , , and Niiler P. P. , 2005: GPS–cellular drifter technology for coastal ocean observing system. J. Atmos. Oceanic Technol., 22, 13811388, doi:10.1175/JTECH1786.1.

    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., and et al. , 2013: Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett., 40, 61716175, doi:10.1002/2013GL058624.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T., , and Fischer P. , 2012: CFD application to oceanic mixed layer sampling with Lagrangian platforms. Int. J. Comput. Fluid Dyn., 26, 337348, doi:10.1080/10618562.2012.668888.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T., , Poje A. , , Fischer P. , , and Haza A. , 2011: Large eddy simulations of mixed layer instabilities and sampling strategies. Ocean Modell., 39, 311331, doi:10.1016/j.ocemod.2011.05.006.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T., , Poje A. , , Fischer P. , , Childs H. , , Krishnan H. , , Garth C. , , Haza A. , , and Ryan E. , 2012: On multi-scale dispersion under the influence of surface mixed layer instabilities and deep flows. Ocean Modell., 56, 1630, doi:10.1016/j.ocemod.2012.07.004.

    • Search Google Scholar
    • Export Citation
  • Piterbarg, L., 2012: Finite size Lyapunov exponent for some simple models of turbulence. Appl. Math. Modell., 36, 34643476, doi:10.1016/j.apm.2011.10.024.

    • Search Google Scholar
    • Export Citation
  • Poje, A., , Haza A. , , Özgökmen T. , , Magaldi M. , , and Garraffo Z. , 2010: Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Modell., 31, 3650, doi:10.1016/j.ocemod.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Poje, A., and et al. , 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon Oil Spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, doi:10.1073/pnas.1402452111.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1926: Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. London, 110A, 709737, doi:10.1098/rspa.1926.0043.

    • Search Google Scholar
    • Export Citation
  • Schroeder, K., , Haza A. C. , , Griffa A. , , Özgökmen T. M. , , Poulain P. , , Gerin R. , , Peggion G. , , and Rixen M. , 2011: Relative dispersion in the Liguro-Provençal basin: From sub-mesoscale to mesoscale. Deep-Sea Res. I, 58, 209228, doi:10.1016/j.dsr.2010.11.004.

    • Search Google Scholar
    • Export Citation
  • Schroeder, K., and et al. , 2012: Targeted Lagrangian sampling of submesoscale dispersion at a coastal frontal zone. Geophys. Res. Lett., 39, L11608, doi:10.1029/2012GL051879.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A., , Asaro E. A. D. , , Lee C. M. , , Klymak J. M. , , Molemaker M. J. , , and McWilliams J. C. , 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, doi:10.1002/grl.50919.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., , Tandon A. , , and Mahadevan A. , 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

  • Zhong, Y., , Bracco A. , , and Villareal T. , 2012: Pattern formation at the ocean surface: Sargassum distribution and the role of the eddy field. Limnol. Oceanogr. Fluids Environ., 2, 1227, doi:10.1215/21573689-1573372.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 10
PDF Downloads 30 30 10

How Does Drifter Position Uncertainty Affect Ocean Dispersion Estimates?

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 2 Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche, La Spezia, Italy
  • | 3 City University of New York, New York, New York
  • | 4 NorthWest Research Associates, Seattle, Washington
© Get Permissions
Restricted access

Abstract

To develop methodologies to maximize the information content of Lagrangian data subject to position errors, synthetic trajectories produced by both a large-eddy simulation (LES) of an idealized submesoscale flow field and a high-resolution Hybrid Coordinate Ocean Model simulation of the North Atlantic circulation are analyzed. Scale-dependent Lagrangian measures of two-particle dispersion, mainly the finite-scale Lyapunov exponent [FSLE; λ(δ)], are used as metrics to determine the effects of position uncertainty on the observed dispersion regimes. It is found that the cumulative effect of position uncertainty on λ(δ) may extend to scales 20–60 times larger than the position uncertainty. The range of separation scales affected by a given level of position uncertainty depends upon the slope of the true FSLE distribution at the scale of the uncertainty. Low-pass filtering or temporal subsampling of the trajectories reduces the effective noise amplitudes at the smallest spatial scales at the expense of limiting the maximum computable value of λ. An adaptive time-filtering approach is proposed as a means of extracting the true FSLE signal from data with uncertain position measurements. Application of this filtering process to the drifters with the Argos positioning system released during the LatMix: Studies of Submesoscale Stirring and Mixing (2011) indicates that the measurement noise dominates the dispersion regime in λ for separation scales δ < 3 km. An expression is provided to estimate position errors that can be afforded depending on the expected maximum λ in the submesoscale regime.

Corresponding author address: Angelique C. Haza, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: ahaza@rsmas.miami.edu

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Abstract

To develop methodologies to maximize the information content of Lagrangian data subject to position errors, synthetic trajectories produced by both a large-eddy simulation (LES) of an idealized submesoscale flow field and a high-resolution Hybrid Coordinate Ocean Model simulation of the North Atlantic circulation are analyzed. Scale-dependent Lagrangian measures of two-particle dispersion, mainly the finite-scale Lyapunov exponent [FSLE; λ(δ)], are used as metrics to determine the effects of position uncertainty on the observed dispersion regimes. It is found that the cumulative effect of position uncertainty on λ(δ) may extend to scales 20–60 times larger than the position uncertainty. The range of separation scales affected by a given level of position uncertainty depends upon the slope of the true FSLE distribution at the scale of the uncertainty. Low-pass filtering or temporal subsampling of the trajectories reduces the effective noise amplitudes at the smallest spatial scales at the expense of limiting the maximum computable value of λ. An adaptive time-filtering approach is proposed as a means of extracting the true FSLE signal from data with uncertain position measurements. Application of this filtering process to the drifters with the Argos positioning system released during the LatMix: Studies of Submesoscale Stirring and Mixing (2011) indicates that the measurement noise dominates the dispersion regime in λ for separation scales δ < 3 km. An expression is provided to estimate position errors that can be afforded depending on the expected maximum λ in the submesoscale regime.

Corresponding author address: Angelique C. Haza, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: ahaza@rsmas.miami.edu

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Save