• Arrigo, K. R., , and Thomas D. , 2004: Large scale importance of sea ice biology in the Southern Ocean. Antarct. Sci., 16, 471476, doi:10.1017/S0954102004002263.

    • Search Google Scholar
    • Export Citation
  • Ehn, J. K., , Mundy C. J. , , and Barber D. G. , 2008: Bio-optical and structural properties inferred from irradiance measurements within the bottommost layers in an Arctic landfast sea ice cover. J. Geophys. Res., 113, C03S03, doi:10.1029/2007JC004194.

    • Search Google Scholar
    • Export Citation
  • Frey, K. E., , Perovich D. K. , , and Light B. , 2011: The spatial distribution of solar radiation under a melting Arctic sea ice cover. Geophys. Res. Lett., 38, L22501, doi:10.1029/2011GL049421.

    • Search Google Scholar
    • Export Citation
  • Fritsen, C. H., , Lytle V. I. , , Ackley S. F. , , and Sullivan C. W. , 1994: Autumn bloom of Antarctic pack-ice algae. Science, 266, 782784, doi:10.1126/science.266.5186.782.

    • Search Google Scholar
    • Export Citation
  • Fritsen, C. H., , Wirthlin E. D. , , Momberg D. K. , , Lewis M. J. , , and Ackley S. F. , 2011: Bio-optical properties of Antarctic pack ice in the early austral spring. Deep-Sea Res. II, 58, 10521061, doi:10.1016/j.dsr2.2010.10.028.

    • Search Google Scholar
    • Export Citation
  • Gosselin, M., , Lavasseur M. , , Wheeler P. A. , , Horner R. A. , , and Booth B. C. , 1997: New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res. II, 44, 16231644, doi:10.1016/S0967-0645(97)00054-4.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C., , and Perovich D. K. , 1984: Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea. J. Geophys. Res., 89, 35733580, doi:10.1029/JC089iC03p03573.

    • Search Google Scholar
    • Export Citation
  • Haas, C., , Thomas D. N. , , and Bareiss J. , 2001: Surface properties and processes of perennial Antarctic sea ice in summer. J. Glaciol., 47, 613625, doi:10.3189/172756501781831864.

    • Search Google Scholar
    • Export Citation
  • Jackson, K., , Wilkinson J. , , Maksym T. , , Meldrum D. , , Beckers J. , , Haas C. , , and Mackenzie D. , 2013: A novel and low-cost sea ice mass balance buoy. J. Atmos. Oceanic Technol., 30, 26762688, doi:10.1175/JTECH-D-13-00058.1.

    • Search Google Scholar
    • Export Citation
  • Karentz, D., , Cleaver J. E. , , and Mitchell D. L. , 1991: Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J. Phycol., 27, 326341, doi:10.1111/j.0022-3646.1991.00326.x.

    • Search Google Scholar
    • Export Citation
  • Kuusk, J., 2011: Dark signal temperature dependence correction method for miniature spectrometer modules. J. Sens., 2011, 608157, doi:10.1155/2011/608157.

    • Search Google Scholar
    • Export Citation
  • Legendre, L., , Martineau M.-J. , , Therriault J.-C. , , and Demers S. , 1992: Chlorophyll a biomass and growth of sea-ice microalgae along a salinity gradient (southeastern Hudson Bay, Canadian Arctic). Polar Biol., 12, 445453.

    • Search Google Scholar
    • Export Citation
  • Light, B., , Grenfell T. C. , , and Perovich D. K. , 2008: Transmission and absorption of solar radiation by Arctic sea ice during the melt season. J. Geophys. Res., 113, C03023, doi:10.1029/2006JC003977.

    • Search Google Scholar
    • Export Citation
  • Maksym, T., , and Jeffries M. O. , 2001: Phase and compositional evolution of the flooded layer during snow-ice formation on Antarctic sea ice. Ann. Glaciol., 33, 3744, doi:10.3189/172756401781818860.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., , and Grenfell T. C. , 1975: The spectral distribution of light beneath first-year sea ice in the Arctic Ocean. Limnol. Oceanogr., 20, 554563, doi:10.4319/lo.1975.20.4.0554.

    • Search Google Scholar
    • Export Citation
  • Mundy, C. J., , Ehn J. K. , , Barber D. G. , , and Michel C. , 2007: Influence of snow cover and algae on the spectral dependence of transmitted irradiance through Arctic landfast first-year sea ice. J. Geophys. Res, 112, C03007, doi:10.1029/2006JC003683.

    • Search Google Scholar
    • Export Citation
  • Nicolaus, M., , and Katlein C. , 2013: Mapping radiation transfer through sea ice using a remotely operated vehicle (ROV). Cryosphere, 7, 763777, doi:10.5194/tc-7-763-2013.

    • Search Google Scholar
    • Export Citation
  • Nicolaus, M., , Gerland S. , , Hudson S. R. , , Hanson S. , , Haapala J. , , and Perovich D. K. , 2010a: Seasonality of spectral albedo and transmittance as observed in the Arctic Transpolar Drift in 2007. J. Geophys. Res., 115, C11011, doi:10.1029/2009JC006074.

    • Search Google Scholar
    • Export Citation
  • Nicolaus, M., , Hudson S. R. , , Gerland S. , , and Munderloh K. , 2010b: A modern concept for autonomous and continuous measurements of spectral albedo and transmittance of sea ice. Cold Reg. Sci. Technol., 62, 1428, doi:10.1016/j.coldregions.2010.03.001.

    • Search Google Scholar
    • Export Citation
  • Nicolaus, M., , Katlein C. , , Maslanik J. , , and Hendricks S. , 2012: Changes in Arctic sea ice result in increasing light transmittance and absorption. Geophys. Res. Lett., 39, L24501, doi:10.1029/2012GL053738.

    • Search Google Scholar
    • Export Citation
  • Palmisano, A. C., , Beeler SooHoo J. , , Moe R. L. , , and Sullivan C. W. , 1987: Sea ice microbial communities. VII. Changes in under-ice spectral irradiance during the development of Antarctic sea ice microalgal communities. Mar. Ecol.: Prog. Ser., 35, 165173, doi:10.3354/meps035165.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , Cota G. F. , , Maykut G. A. , , and Grenfell T. C. , 1993: Bio-optical observations of first-year Arctic sea ice. Geophys. Res. Lett., 20, 10591062, doi:10.1029/93GL01316.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , Roesler C. S. , , and Pegau W. S. , 1998: Variability in Arctic sea ice optical properties. J. Geophys. Res., 103, 11931208, doi:10.1029/97JC01614.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , Grenfell T. C. , , Light B. , , and Hobbs P. V. , 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 107, 8044, doi:10.1029/2000JC000438.

    • Search Google Scholar
    • Export Citation
  • Richter-Menge, J. A., , Perovich D. K. , , Elder B. C. , , Claffey K. , , Rigor I. , , and Ortmeyer M. , 2006: Ice mass-balance buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover. Ann. Glaciol., 44, 205210, doi:10.3189/172756406781811727.

    • Search Google Scholar
    • Export Citation
  • Saenz, B. T., , and Arrigo K. R. , 2012: Simulation of a sea ice ecosystem using a hybrid model for slush layer desalination. J. Geophys. Res., 117, C05007, doi:10.1029/2011JC007544.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., , Brandt R. E. , , and Grenfell T. C. , 2006: Visible and near-ultraviolet absorption spectrum of ice from transmission of solar radiation into snow. Appl. Opt., 45, 53205334, doi:10.1364/AO.45.005320.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 5
PDF Downloads 36 36 7

A Fiber Optic Spectrometry System for Measuring Irradiance Distributions in Sea Ice Environments

View More View Less
  • 1 State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, Zhejiang, China
  • | 2 State Key Laboratory of Fluid Power Transmission and Control, and Ocean College, Zhejiang University, Hangzhou, Zhejiang, China
  • | 3 Ocean College, Zhejiang University, Hangzhou, Zhejiang, China
  • | 4 Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions
Restricted access

Abstract

A fiber optic–based spectrometry system was developed to enable automated, long-term measurements of spectral irradiance in sea ice environments. This system utilizes a single spectrometer module that measures the irradiance transmitted by multiple optical fibers, each coupled to the input fiber of the module via a mechanical rotary multiplexer. Small custom-printed optical diffusers, fixed to the input end of each fiber, allow these probes to be frozen into ice auger holes as small as 5 cm in diameter. Temperature-dependent biases in the spectrometer module and associated electronics were examined down to −40°C using an environmental chamber to identify any artifacts that might arise when operating these electronic and optical components below their vendor-defined lower temperature limits. The optical performance of the entire system was assessed by freezing multiple fiber probes in a 1.2-m-tall ice column, illuminating from above with a light source, and measuring spectral irradiance distributions at different depths within the ice column. Results indicated that the radiometric sensitivity of this fiber-based system is comparable to that of commercially available oceanographic spectroradiometers.

Corresponding author address: Samuel Laney, Biology Department, Woods Hole Oceanographic Institution, MS 34, Redfield 1-38, Woods Hole, MA 02543. E-mail: slaney@whoi.edu

Abstract

A fiber optic–based spectrometry system was developed to enable automated, long-term measurements of spectral irradiance in sea ice environments. This system utilizes a single spectrometer module that measures the irradiance transmitted by multiple optical fibers, each coupled to the input fiber of the module via a mechanical rotary multiplexer. Small custom-printed optical diffusers, fixed to the input end of each fiber, allow these probes to be frozen into ice auger holes as small as 5 cm in diameter. Temperature-dependent biases in the spectrometer module and associated electronics were examined down to −40°C using an environmental chamber to identify any artifacts that might arise when operating these electronic and optical components below their vendor-defined lower temperature limits. The optical performance of the entire system was assessed by freezing multiple fiber probes in a 1.2-m-tall ice column, illuminating from above with a light source, and measuring spectral irradiance distributions at different depths within the ice column. Results indicated that the radiometric sensitivity of this fiber-based system is comparable to that of commercially available oceanographic spectroradiometers.

Corresponding author address: Samuel Laney, Biology Department, Woods Hole Oceanographic Institution, MS 34, Redfield 1-38, Woods Hole, MA 02543. E-mail: slaney@whoi.edu
Save