• Ashby, N., 2007: Relativistic effects in Earth-orbiting Doppler lidar return signals. J. Opt. Soc. Amer., 24A, 35303546, doi:10.1364/JOSAA.24.003530.

    • Search Google Scholar
    • Export Citation
  • Baker, W. A., and Coauthors, 1995: Lidar-measured winds from space: A key component for weather and climate prediction. Bull. Amer. Meteor. Soc., 76, 869888, doi:10.1175/1520-0477(1995)076<0869:LMWFSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beyon, J. Y., and Koch G. J. , 2006a: Resolution study of wind parameter estimates by a coherent Doppler lidar system. Laser Radar Technology and Applications XI, G. W. Kamerman and M. D. Turner, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6214), 621403, doi:10.1117/12.663416.

  • Beyon, J. Y., and Koch G. J. , 2006b: Wind profiling by a coherent Doppler lidar system VALIDAR with a subspace decomposition approach. Signal and Data Processing of Small Targets 2006, E. E. Drummond, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 6236), 623605, doi:10.1117/12.663423.

  • Beyon, J. Y., and Koch G. J. , 2007: Novel nonlinear adaptive Doppler-shift estimation technique for the coherent Doppler validation lidar. Opt. Eng.,46, 016002, doi:10.1117/1.2434768.

  • Beyon, J. Y., Koch G. J. , and Li Z. , 2006: Noise normalization and windowing functions for VALIDAR in wind parameter estimation. Laser Radar Technology and Applications XI, G. W. Kamerman and M. D. Turner, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6214), 621404, doi:10.1117/12.663420.

  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) Field Experiment. Bull. Amer. Meteor. Soc., 94, 345–363, doi:http://dx.doi.org/10.1175/BAMS-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 1994: Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets. J. Mod. Opt., 41, 21152129, doi:10.1080/09500349414551991.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 2004: Velocity error for coherent Doppler lidar with pulse accumulation. J. Atmos. Oceanic Technol., 21, 905919, doi:10.1175/JTECH1596.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., and Kavaya M. J. , 1991: Coherent laser radar performance for general atmospheric refractive turbulence. Appl. Opt., 30, 53255352, doi:10.1364/AO.30.005325.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., and Yadlowsky M. J. , 1994: Performance of mean-frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol., 11, 12171230, doi:10.1175/1520-0426(1994)011<1217:POMFEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Hannon S. M. , and Henderson S. W. , 1997: Coherent Doppler lidar measurements of winds in the weak signal regime. Appl. Opt., 36, 34913499, doi:10.1364/AO.36.003491.

    • Search Google Scholar
    • Export Citation
  • Gagliardi, R. M., and Karp S. , Eds., 1976: Optical Communications. Wiley-Interscience, 432 pp.

  • Goldstein, H., Poole C. P. Jr., and Safko J. L. , 2001: Classical Mechanics. 3rd ed. Addison-Wesley, 680 pp.

  • Gudimetla, V. S. R., and Kavaya M. J. , 1999: Special relativity corrections for space-based lidars. Appl. Opt., 38, 63746382, doi:10.1364/AO.38.006374.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., Gatt P. , Rees D. , and Milton Huffaker R. , 2005: Wind lidar. Laser Remote Sensing, T. Fujii and T. Fukuchi, Eds., CRC Taylor and Francis, 469–722.

  • Huffaker, R. M., Lawrence T. R. , Post M. J. , Priestly J. T. , Hall F. F. Jr., Richter R. A. , and Keeler R. J. , 1984: Feasibility studies for a global wind measuring satellite system (Windsat): Analysis of simulated performance. Appl. Opt., 23, 25232536, doi:10.1364/AO.23.002523.

    • Search Google Scholar
    • Export Citation
  • Jani, M. G., Naranjo F. L. , Barnes N. P. , Murray K. E. , and Lockard G. E. , 1995: Diode-pumped long-pulse-length Ho:Tm:YLiF4 laser at 10 Hz. Opt. Lett., 20, 872874, doi:10.1364/OL.20.000872.

    • Search Google Scholar
    • Export Citation
  • Jani, M. G., Barnes N. , Murray K. E. , Hart D. W. , Quarles G. J. , and Castillo V. K. , 1997: Diode-pumped Ho:Tm:LuLiF4 laser at room temperature. IEEE J. Quantum Electron., 33, 112–115, doi:10.1109/3.554905.

    • Search Google Scholar
    • Export Citation
  • Kavaya, M. J., and Menzies R. T. , 1985: Lidar aerosol backscatter measurements: Systematic, modeling, and calibration error considerations. Appl. Opt., 24, 34443453, doi:10.1364/AO.24.003444.

    • Search Google Scholar
    • Export Citation
  • Kingston, R. H., 1978: Detection of Optical and Infrared Radiation. Springer Series in Optical Sciences, Vol. 10, Springer-Verlag, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Koch, G. J., Beyon J. Y. , Barnes B. W. , Petros M. , Yu J. , Amzajerdian F. , Kavaya M. J. , and Singh U. N. , 2007: High-energy 2μm Doppler Lidar for wind measurements. Opt. Eng.,46, 116201, doi:10.1117/1.2802584.

  • Koch, G. J., and Coauthors, 2010: Field testing of a high-energy 2-μm Doppler lidar. J. Appl. Remote Sens., 4, 043512, doi:10.1117/1.3368726.

    • Search Google Scholar
    • Export Citation
  • Koch, G. J., Beyon J. Y. , Modlin E. A. , Petzar P. J. , Woll S. , Petros M. , Yu J. , and Kavaya M. J. , 2012: Side-scan Doppler lidar for offshore wind energy applications. J. Appl. Remote Sens., 6, 063562, doi:10.1117/1.JRS.6.063562.

    • Search Google Scholar
    • Export Citation
  • Menzies, R. T., and Tratt D. M. , 1997: Airborne lidar observations of tropospheric aerosols during the Global Backscatter Experiment (GLOBE) Pacific circumnavigation missions of 1989 and 1990. J. Geophys. Res., 102, 37013714, doi:10.1029/96JD03405.

    • Search Google Scholar
    • Export Citation
  • NASA, 2006: Working group report. J. Neff and A. Valinia, Eds., Lidar Technologies, 171 pp. [Available online at http://esto.nasa.gov/files/LWGReport2006.pdf.]

  • NRC, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. The National Academies Press, 456 pp.

    • Search Google Scholar
    • Export Citation
  • Rye, B. J., 1979: Antenna parameters for incoherent backscatter heterodyne lidar. Appl. Opt., 18, 13901398, doi:10.1364/AO.18.001390.

    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Frehlich R. G. , 1992: Optimal truncation and optical efficiency of an aperture coherent lidar focused on an incoherent backscatter target. Appl. Opt., 31, 28912899, doi:10.1364/AO.31.002891.

    • Search Google Scholar
    • Export Citation
  • Shapiro, J. H., and Wagner S. S. , 1984: Phase and amplitude uncertainties in heterodyne detection. IEEE J. Quantum Electron., 20, 803813, doi:10.1109/JQE.1984.1072470.

    • Search Google Scholar
    • Export Citation
  • Singh, U. N., Ismail S. , Kavaya M. J. , Winker D. M. , and Amzajerdian F. , 2005: Space-based lidar. Laser Remote Sensing, T. Fujii and T. Fukuchi, Eds., CRC Taylor & Francis, 781–881.

  • Taff, L. G., 1983: Relativity and radars. MIT/LL Tech. Rep. 660, AD-A133791, 22 pp.

  • Walsh, B., Barnes N. , Petros M. , Yu J. , and Singh U. , 2004: Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4. J. Appl. Phys., 95, 3255, doi:10.1063/1.1649808.

    • Search Google Scholar
    • Export Citation
  • Yu, J., Singh U. , Barnes N. , and Petros M. , 1998: 125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser. Opt. Lett., 23, 780–782, doi:10.1364/OL.23.000780.

    • Search Google Scholar
    • Export Citation
  • Yu, J., and Coauthors, 2006: 1 J/pulse Q-switched 2 μm solid-state laser. Opt. Lett., 31, 462464, doi:10.1364/OL.31.000462.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 31
PDF Downloads 27 27 27

The Doppler Aerosol Wind (DAWN) Airborne, Wind-Profiling Coherent-Detection Lidar System: Overview and Preliminary Flight Results

View More View Less
  • 1 NASA Langley Research Center, Hampton, Virginia
Restricted access

Abstract

The first airborne wind measurements of a pulsed, 2-μm solid-state, high-energy, wind-profiling lidar system for airborne measurements are presented. The laser pulse energy is the highest to date in an eye-safe airborne wind lidar system. This energy, the 10-Hz laser pulse rate, the 15-cm receiver diameter, and dual-balanced coherent detection together have the potential to provide much-improved lidar sensitivity to low aerosol backscatter levels compared to earlier airborne-pulsed coherent lidar wind systems. Problems with a laser-burned telescope secondary mirror prevented a full demonstration of the lidar’s capability, but the hardware, algorithms, and software were nevertheless all validated. A lidar description, relevant theory, and preliminary results of flight measurements are presented.

Corresponding author address: Michael J. Kavaya, NASA Langley Research Center, 5 N. Dryden St., Mail Code 468, Hampton, VA 23681. E-mail: michael.j.kavaya@nasa.gov

Abstract

The first airborne wind measurements of a pulsed, 2-μm solid-state, high-energy, wind-profiling lidar system for airborne measurements are presented. The laser pulse energy is the highest to date in an eye-safe airborne wind lidar system. This energy, the 10-Hz laser pulse rate, the 15-cm receiver diameter, and dual-balanced coherent detection together have the potential to provide much-improved lidar sensitivity to low aerosol backscatter levels compared to earlier airborne-pulsed coherent lidar wind systems. Problems with a laser-burned telescope secondary mirror prevented a full demonstration of the lidar’s capability, but the hardware, algorithms, and software were nevertheless all validated. A lidar description, relevant theory, and preliminary results of flight measurements are presented.

Corresponding author address: Michael J. Kavaya, NASA Langley Research Center, 5 N. Dryden St., Mail Code 468, Hampton, VA 23681. E-mail: michael.j.kavaya@nasa.gov
Save