• Bhartia, P. K., McPeters R. D. , Mateer C. L. , Flynn L. E. , and Wellemeyer C. , 1996: Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique. J. Geophys. Res., 101, 18 79318 806, doi:10.1029/96JD01165.

    • Search Google Scholar
    • Export Citation
  • Bian, J., Wang G. , Chen H. , Qi D. , D. , and Zhou X. , 2006: Ozone mini-hole occurring over the Tibetan Plateau in December 2003 (in Chinese). Chin. Sci. Bull., 51, 885888, doi:10.1007/s11434-006-0885-y.

    • Search Google Scholar
    • Export Citation
  • Borbas, E., Seemann S. W. , Huang H.-L. , Li J. , and Menzel W. P. , 2005: Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity. Proceedings of the Fourteenth International TOVS Study Conference, ITWG Rep., 763–770.

  • Box, M. A., Gerstl S. A. W. , and Simmer C. , 1988: Application of the adjoint formulation to the calculation of atmospheric radiative effects. Beitr. Phys. Atmos., 61, 303311.

    • Search Google Scholar
    • Export Citation
  • Cheng, M., Shi G. , and Zhou X. , 1990: Numerical experiment of combined infrared and ultraviolet radiation remote sensing to determine the profile and total content of atmospheric ozone. Adv. Atmos. Sci., 7, 305319, doi:10.1007/BF03179763.

    • Search Google Scholar
    • Export Citation
  • Clerbaux, C., and Coauthors, 2007: The IASI/MetOp mission: First observations and highlights of its potential contribution to GMES. Space Res. Today,168, 19–24, doi:10.1016/S0045-8732(07)80046-5.

  • Eck, T. F., Bhartia P. K. , and Kerr J. B. , 1995: Satellite estimation of spectral UVB irradiance using TOMS derived total ozone and UV reflectivity. Geophys. Res. Lett., 22, 611614, doi:10.1029/95GL00111.

    • Search Google Scholar
    • Export Citation
  • Finlayson-Pitts, B. J., and Pitts J. N. Jr., 1997: Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science, 276, 10451052, doi:10.1126/science.276.5315.1045.

    • Search Google Scholar
    • Export Citation
  • Fishman, J., and Larsen J. C. , 1987: Distribution of total ozone and stratospheric ozone in the tropics: Implications for the distribution of tropospheric ozone. J. Geophys. Res., 92, 66276634, doi:10.1029/JD092iD06p06627.

    • Search Google Scholar
    • Export Citation
  • Han, Y., van Delst P. , Liu Q. , Weng F. , Yan B. , Treadon R. , and Derber J. , 2006: JCSDA Community Radiative Transfer Model (CRTM)—Version 1. NOAA Tech. Rep. NESDIS 122, 33 pp.

  • Hasekamp, O. P., and Landgraf J. , 2001: Ozone profile retrieval from backscattered ultraviolet radiances: The inverse problem solved by regularization. J. Geophys. Res., 106, 80778088, doi:10.1029/2000JD900692.

    • Search Google Scholar
    • Export Citation
  • Hasekamp, O. P., and Landgraf J. , 2002: Tropospheric ozone information from satellite-based polarization measurements. J. Geophys. Res., 107, 4326, doi:10.1029/2001JD001346.

    • Search Google Scholar
    • Export Citation
  • Herman, J. R., and Celarier E. A. , 1997: Earth surface reflectivity climatology at 340–380 nm from TOMS data. J. Geophys. Res., 102, 28 00328 011, doi:10.1029/97JD02074.

    • Search Google Scholar
    • Export Citation
  • Hofmann, D. J., and Montzka S. A. , 2009: Recovery of the ozone layer: The ozone depleting gas index. Eos, Trans. Amer. Geophys. Union, 90, 1–2, doi:10.1029/2009EO010001.

    • Search Google Scholar
    • Export Citation
  • Li, J., and Lu D. , 1997: Nonlinear retrieval of atmospheric ozone profile from solar backscatter ultraviolet measurements: Theory and simulation. Adv. Atmos. Sci., 14, 473480, doi:10.1007/s00376-997-0065-2.

    • Search Google Scholar
    • Export Citation
  • Li, J., Wolf W. W. , Menzel W. P. , Zhang W. , Huang H. L. , and Achtor T. H. , 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteor., 39, 12481268, doi:10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, X. L., Schmit T. J. , and Smith W. L. , 1999: A nonlinear physical retrieval algorithm—Its application to the GOES-8/9 sounder. J. Appl. Meteor., 38, 501513, doi:10.1175/1520-0450(1999)038<0501:ANPRAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPeters, R. D., Labow G. J. , and Johnson B. J. , 1997: A satellite-derived ozone climatology for balloonsonde estimation of total column ozone. J. Geophys. Res., 102, 88758885, doi:10.1029/96JD02977.

    • Search Google Scholar
    • Export Citation
  • Mijling, B., Tuinder O. N. E. , van Oss R. F. , and van der A R. J. , 2010: Improving ozone profile retrieval from spaceborne UV backscatter spectrometers using convergence behaviour diagnostics. Atmos. Meas. Tech., 3, 15551568, doi:10.5194/amt-3-1555-2010.

    • Search Google Scholar
    • Export Citation
  • Pierce, R. B., and Coauthors, 2009: Impacts of background ozone production on Houston and Dallas, Texas, air quality during the Second Texas Air Quality Study field mission. J. Geophys. Res., 114, D00F09, doi:10.1029/2008JD011337.

    • Search Google Scholar
    • Export Citation
  • Pittman, J. V., and Coauthors, 2009: Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements. J. Geophys. Res., 114, D24109, doi:10.1029/2009JD012493.

    • Search Google Scholar
    • Export Citation
  • Qu, Y., Goldberg M. D. , and Divakarla M. , 2001: Ozone profile retrieval from satellite observation using high spectral resolution infrared sounding instrument. Adv. Atmos. Sci., 18, 959971.

    • Search Google Scholar
    • Export Citation
  • Rozanov, A., Rozanov V. V. , Buchwitz M. , Kokhanovsky A. , and Burrows J. P. , 2005: SCIATRAN 2.0—A new radiative transfer model for geophysical applications in the 175-2400 nm spectral region. Adv. Space Res., 36, 10151019, doi:10.1016/j.asr.2005.03.012.

    • Search Google Scholar
    • Export Citation
  • Rozanov, V. V., 2006: Adjoint radiative transfer equation and inverse problems. Light Scattering Reviews: Single and Multiple Light Scattering, A. A. Kokhanovsky, Ed., Springer Praxis Books, Part II, Springer, 339–392, doi:10.1007/3-540-37672-0_8.

  • Rozanov, V. V., Diebel D. , Spurr R. J. D. , and Burrows J. P. , 1997: GOMETRAN: A radiative transfer model for the satellite project GOME, the plane-parallel version. J. Geophys. Res.,102, 16 683–16 695, doi:10.1029/96JD01535.

  • Rozanov, V. V., Buchwitz M. , Eichmann K.-U. , de Beek R. , and Burrows J. P. , 2002: SCIATRAN—A new radiative transfer model for geophysical applications in the 240–2400 nm spectral region: The pseudo-spherical version. Adv. Space Res., 29, 18311835, doi:10.1016/S0273-1177(02)00095-9.

    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., Li J. , Menzel W. P. , and Gumley L. E. , 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteor., 42, 10721091, doi:10.1175/1520-0450(2003)042<1072:OROATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torres, O., and Bhartia P. K. , 1995: Effect of stratospheric aerosols on ozone profile from BUV measurements. Geophys. Res. Lett., 22, 235238, doi:10.1029/94GL02994.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and Coauthors, 2010: Analysis for retrieval and validation results of FY-3 Total Ozone Unit (TOU). Chin. Sci. Bull., 55, 30373043, doi:10.1007/s11434-010-3240-2.

    • Search Google Scholar
    • Export Citation
  • Wassmann, A., Landgraf J. , and Aben I. , 2011: Ozone profiles from clear sky thermal infrared measurements of the Infrared Atmospheric Sounding Interferometer: A retrieval approach accounting for thin cirrus. J. Geophys. Res., 116, D22302, doi:10.1029/2011JD016066.

    • Search Google Scholar
    • Export Citation
  • Wei, J. C., Pan L. L. , Maddy E. , Pittman J. V. , Divarkarla M. , Xiong X. , and Barnet C. , 2010: Ozone profile retrieval from an advanced infrared sounder: Experiments with tropopause-based climatology and optimal estimation approach. J. Atmos. Oceanic Technol., 27, 11231139, doi:10.1175/2010JTECHA1384.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 0 0 0

Impact of Terrain Altitude and Cloud Height on Ozone Remote Sensing from Satellite

View More View Less
  • 1 Nanjing University of Information Science and Technology, Nanjing, and National Satellite Meteorological Center, Chinese Meteorological Administration, Beijing, China
  • | 2 National Satellite Meteorological Center, Chinese Meteorological Administration, Beijing, China
  • | 3 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
  • | 4 National Satellite Meteorological Center, Chinese Meteorological Administration, Beijing, China
Restricted access

Abstract

Terrain and cloud height heavily impact ozone information despite ozone being concentrated in the stratosphere. The ozone weighting function (OWF) provides important information towards understanding the capabilities and limitations of a given channel. The factors that impact the OWF can be analyzed using radiative transfer theory and modeling. At the 9.6-μm infrared spectral region, both the OWF values and peaks are related to the surface temperature, terrain altitude, and cloud height. Warmer surface temperatures, lower terrain altitude, or lower cloud levels will give larger weighting function values, and the peak of the weighting function slightly increases with the increase in surface temperature, terrain altitude, or cloud height. For longer UV bands such as 306 and 318 nm, OWF shows smaller values for higher terrains, while showing larger values when clouds are present. However, in the shorter UV bands such as 274 and 288 nm, OWF has almost no relationship with the surface and clouds. Therefore, with satellite-based infrared ozone remote sensing, high terrain and cloud presence will reduce ozone sensitivity and information content. In addition, for UV bands, the effect is spectrally dependent: lower terrain altitude and the presence of clouds will increase the zone information content in the longer UV band, but they have no effect in the short UV band. A simulation of an ozone retrieval in the infrared band shows that higher terrain results in lower precision for colder emitting surface temperatures and less ozone absorption signal.

Corresponding author address: Wenguang Bai, National Satellite Meteorological Center, Chinese Meteorological Administration, 46 Zhongguancun South St., Beijing 100081, China. E-mail: wenguang.bai@ssec.wisc.edu

Abstract

Terrain and cloud height heavily impact ozone information despite ozone being concentrated in the stratosphere. The ozone weighting function (OWF) provides important information towards understanding the capabilities and limitations of a given channel. The factors that impact the OWF can be analyzed using radiative transfer theory and modeling. At the 9.6-μm infrared spectral region, both the OWF values and peaks are related to the surface temperature, terrain altitude, and cloud height. Warmer surface temperatures, lower terrain altitude, or lower cloud levels will give larger weighting function values, and the peak of the weighting function slightly increases with the increase in surface temperature, terrain altitude, or cloud height. For longer UV bands such as 306 and 318 nm, OWF shows smaller values for higher terrains, while showing larger values when clouds are present. However, in the shorter UV bands such as 274 and 288 nm, OWF has almost no relationship with the surface and clouds. Therefore, with satellite-based infrared ozone remote sensing, high terrain and cloud presence will reduce ozone sensitivity and information content. In addition, for UV bands, the effect is spectrally dependent: lower terrain altitude and the presence of clouds will increase the zone information content in the longer UV band, but they have no effect in the short UV band. A simulation of an ozone retrieval in the infrared band shows that higher terrain results in lower precision for colder emitting surface temperatures and less ozone absorption signal.

Corresponding author address: Wenguang Bai, National Satellite Meteorological Center, Chinese Meteorological Administration, 46 Zhongguancun South St., Beijing 100081, China. E-mail: wenguang.bai@ssec.wisc.edu
Save