• Arduini, R. F., 1985: Solar radiance models for determination of ERBE scanner filter factor. Contractor Rep. 172595, 40 pp. [Available from NASA Langley Research Center, MS 420, Hampton, VA 23681.]

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185, doi:10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., and Smith G. L. , 1986: The Earth Radiation Budget Experiment: Science and implementation. Rev. Geophys., 24, 379390, doi:10.1029/RG024i002p00379.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., and Kibler J. F. , cited 2013: Earth Radiation Budget Experiment. [Available online at http://badc.nerc.ac.uk/data/gedex/detail/erbe.det.]

  • Barkstrom, B. R., and Wong T. , cited 2013: Earth Radiation Budget Experiment (ERBE) for Monthly Medium-Wide Data Tape (MWDT) (S-7). Langley ASDC Dataset Doc. [Available online at http://eosweb.larc.nasa.gov/GUIDE/dataset_documents/erbe_s7.html.]

  • Bess, T. D., Smith G. L. , Bush K. A. , and Rutan D. A. , 1999: Intercomparison of ScaRaB and ERBS monthly mean radiation fluxes. Preprints, 10th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., 6063.

  • Bloom, S. A., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) Data Assimilation System—Version 4. Technical Report Series on Global Modeling and Data Assimilation, Vol. 26, NASA Tech. Memo. NASA/TM-2005-104606, 181 pp.

  • Green, N. R., and Smith G. L. , 1991: Shortwave shape factor inversion of earth radiation budget observations. J. Atmos. Sci., 48, 390402, doi:10.1175/1520-0469(1991)048<0390:SSFIOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Green, N. R., and Avis L. M. , 1996: Validation of ERBS scanner radiances. J. Atmos. Oceanic Technol., 13, 851862, doi:10.1175/1520-0426(1996)013<0851:VOESR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Green, N. R., House B. F. , Stackhouse P. W. , Xiangqian W. , Ackerman S. A. , Smith W. L. , and Johnson M. J. , 1990: Intercomparison of scanner and nonscanner measurements for the Earth Radiation Budget Experiment. J. Geophys. Res., 95, 11 78511 798, doi:10.1029/JD095iD08p11785.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., Ellingson R. , Ardanuy P. , Weiss M. , Yang S. K. , and Oh S. N. , 1994: A comparison of ERBE and AVHRR longwave flux estimates. Bull. Amer. Meteor. Soc., 75, 21152130, doi:10.1175/1520-0477(1994)075<2115:ACOEAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kato, S., Sun-Mack S. , Miller W. F. , Rose F. G. , Chen Y. , Minnis P. , and Wielicki B. A. , 2010: Relationship among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res., 115, D00H28, doi:10.1029/2009JD012277.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Improvement of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • Kopia, L. P., 1986: Earth Radiation Budget Experiment scanner instrument. Rev. Geophys., 24, 400406, doi:10.1029/RG024i002p00400.

  • Kusterer, J. M., cited 2013: NASA Langley ASDC user services. [Available online at http://ceres.larc.nasa.gov/documents/DPC/DPC_current/pdfs/DPC_IES_R3V1.pdf.]

  • Liu, X., Smith W. L. , Zhou D. K. , and Larar A. , 2006: Principal component-based radiative transfer model for hyperspectral sensors: Theoretical concept. J. Appl. Opt.,45, 201–209, doi:10.1364/AO.45.000201.

  • Loeb, N. G., Priestly K. J. , Kratz D. P. , Geier E. B. , Green R. N. , and Wielicki B. A. , 2001: Determination of unfiltered radiances from the Clouds and the Earth’s Radiant Energy System instrument. J. Appl. Meteor., 40, 822825, doi:10.1175/1520-0450(2001)040<0822:DOURFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Nanalo-Smith N. , Kato S. , Miller W. F. , Gupta S. K. , Minnis P. , and Wielicki B. A. , 2003: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission satellite. Part I: Methodology. J. Appl. Meteor., 42, 240265, doi:10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Kato S. , Loukachine K. , Manalo-Smith N. , and Doelling D. R. , 2007: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra Satellite. Part II: Validation. J. Appl. Meteor. Climatol., 24, 564584, doi:http://dx.doi.org/10.1175/JTECH1983.1

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Wielicki B. A. , Doelling D. R. , Smith G. L. , Keyes D. F. , Kato S. , Manalo-Smith N. , and Wong T. , 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Luther, M. R., Cooper J. E. , and Taylor G. R. , 1986: The Earth Radiation Budget Experiment nonscanner instrument. Rev. Geophys., 24, 391399, doi:10.1029/RG024i002p00391.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2008: Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens., 46, 38573884, doi:10.1109/TGRS.2008.2001351.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, doi:10.1109/TGRS.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., Smith G. L. , Lee R. B. III, and Wong T. , 2001: Intercomparison of CERES scanning and ERBS WFOV non-scanning radiometers. Preprints, 11th Conf. on Satellite Meteorology and Oceanography, Madison, WI, Amer. Meteor. Soc., P5.28. [Available online at https://ams.confex.com/ams/11satellite/techprogram/paper_24163.htm.]

  • Smith, G. L., Szweczyk Z. P. , Rutan D. A. , and Lee R. B. III, 2006: Comparison of measurements from satellite radiation budget instruments. J. Geophys. Res., 111, D04101, doi:10.1029/2005JD006307.

    • Search Google Scholar
    • Export Citation
  • Suttles, J. T., Wielicki B. A. , and Vemury S. , 1992: Top-of-atmosphere radiative fluxes: Validation of ERBE scanner inversion algorithm using Nimbus-7 ERB data. J. Appl. Meteor., 31, 784796, doi:10.1175/1520-0450(1992)031<0784:TOARFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trepte, Q. Z., Minnis P. , and Arduini R. F. , 2003: Daytime and nighttime polar cloud and snow identification using MODIS data. Optical Remote Sensing of the Atmosphere and Clouds III, H.-L. Huang, D. Lu, and Y. Sasano, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4891), 449–459, doi:10.1117/12.467306.

  • USGS, cited2013: Table 1—AVHRR spectral channels, resolution, and primary uses. [Available online at http://ivm.cr.usgs.gov/tables.php.]

  • Vincent, K., cited 2013: Orbital information. NOAA polar orbiter data user’s guide. [Available online at http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/podug/html/c1/sec1-2.htm.]

  • Wielicki, B. A., and Green R. N. , 1989: Cloud identification for ERBE radiative flux retrieval. J. Appl. Meteor., 28, 11331146, doi:10.1175/1520-0450(1989)028<1133:CIFERF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., Cess R. D. , King M. D. , Randall D. A. , and Harrison E. F. , 1995: Mission to planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76, 21252153, doi:10.1175/1520-0477(1995)076<2125:MTPERO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 1998: Clouds and the Earth’s Radiant Energy System (CERES): Algorithm overview. IEEE Trans. Geosci. Remote Sens., 36, 11271141, doi:10.1109/36.701020.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2002: Evidence for large decadal variability in the tropical mean radiative energy budget. Science, 295, 841843, doi:10.1126/science.1065837.

    • Search Google Scholar
    • Export Citation
  • Wong, T., 2013: Earth Radiation Budget Experiment (ERBE) S-8 processed archival tape (PAT) data in native (NAT) format. Langley ASDC Dataset Doc. [Available online at http://eosweb.larc.nasa.gov/GUIDE/dataset_documents/erbe_s8.html.]

  • Wong, T., Wielicki B. A. , Lee R. B. III, Smith G. L. , Bush K. A. , and Willis J. K. , 2006: Reexamination of the observed decadal variability of the earth radiation budget using altitude-corrected ERBE/ERBS nonscanner WFOV data. J. Climate, 19, 40284040, doi:10.1175/JCLI3838.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 2 2 2

Unfiltering Earth Radiation Budget Experiment (ERBE) Scanner Radiances Using the CERES Algorithm and Its Evaluation with Nonscanner Observations

View More View Less
  • 1 Science Systems and Applications Inc., and NASA Langley Research Center, Hampton, Virginia
  • | 2 NASA Langley Research Center, Hampton, Virginia
  • | 3 Science Systems and Applications Inc., and NASA Langley Research Center, Hampton, Virginia
  • | 4 NASA Langley Research Center, Hampton, Virginia
  • | 5 Science Systems and Applications Inc., and NASA Langley Research Center, Hampton, Virginia
Restricted access

Abstract

The NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner measured broadband shortwave, longwave, and total radiances from February 1985 through January 1987. These scanner radiances are reprocessed using the more recent Clouds and the Earth’s Radiant Energy System (CERES) unfiltering algorithm. The scene information, including cloud properties, required for reprocessing is derived using Advanced Very High Resolution Radiometer (AVHRR) data on board NOAA-9, while no imager data were used in the original ERBE unfiltering. The reprocessing increases the NOAA-9 ERBE scanner unfiltered longwave radiances by 1.4%–2.0% during daytime and 0.2%–0.3% during nighttime relative to those derived from the ERBE unfiltering algorithm. Similarly, the scanner unfiltered shortwave radiances increase by ~1% for clear ocean and land and decrease for all-sky ocean, land, and snow/ice by ~1%. The resulting NOAA-9 ERBE scanner unfiltered radiances are then compared with NOAA-9 nonscanner irradiances by integrating the ERBE scanner radiance over the nonscanner field of view. The comparison indicates that the integrated scanner radiances are larger by 0.9% for shortwave and 0.7% smaller for longwave. A sensitivity study shows that the one-standard-deviation uncertainties in the agreement are ±2.5%, ±1.2%, and ±1.8% for the shortwave, nighttime longwave, and daytime longwave irradiances, respectively. The NOAA-9 and ERBS nonscanner irradiances are also compared using 2 years of data. The comparison indicates that the NOAA-9 nonscanner shortwave, nighttime longwave, and daytime longwave irradiances are 0.3% larger, 0.6% smaller, and 0.4% larger, respectively. The longer observational record provided by the ERBS nonscanner plays a critical role in tying the CERES-like NOAA-9 ERBE scanner dataset from the mid-1980s to the present-day CERES scanner data record.

Corresponding author address: Alok K. Shrestha, Science System and Applications Inc., 1 Enterprise Parkway, Suite 200, Hampton, VA 23666. E-mail: alok.k.shrestha@nasa.gov

Abstract

The NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner measured broadband shortwave, longwave, and total radiances from February 1985 through January 1987. These scanner radiances are reprocessed using the more recent Clouds and the Earth’s Radiant Energy System (CERES) unfiltering algorithm. The scene information, including cloud properties, required for reprocessing is derived using Advanced Very High Resolution Radiometer (AVHRR) data on board NOAA-9, while no imager data were used in the original ERBE unfiltering. The reprocessing increases the NOAA-9 ERBE scanner unfiltered longwave radiances by 1.4%–2.0% during daytime and 0.2%–0.3% during nighttime relative to those derived from the ERBE unfiltering algorithm. Similarly, the scanner unfiltered shortwave radiances increase by ~1% for clear ocean and land and decrease for all-sky ocean, land, and snow/ice by ~1%. The resulting NOAA-9 ERBE scanner unfiltered radiances are then compared with NOAA-9 nonscanner irradiances by integrating the ERBE scanner radiance over the nonscanner field of view. The comparison indicates that the integrated scanner radiances are larger by 0.9% for shortwave and 0.7% smaller for longwave. A sensitivity study shows that the one-standard-deviation uncertainties in the agreement are ±2.5%, ±1.2%, and ±1.8% for the shortwave, nighttime longwave, and daytime longwave irradiances, respectively. The NOAA-9 and ERBS nonscanner irradiances are also compared using 2 years of data. The comparison indicates that the NOAA-9 nonscanner shortwave, nighttime longwave, and daytime longwave irradiances are 0.3% larger, 0.6% smaller, and 0.4% larger, respectively. The longer observational record provided by the ERBS nonscanner plays a critical role in tying the CERES-like NOAA-9 ERBE scanner dataset from the mid-1980s to the present-day CERES scanner data record.

Corresponding author address: Alok K. Shrestha, Science System and Applications Inc., 1 Enterprise Parkway, Suite 200, Hampton, VA 23666. E-mail: alok.k.shrestha@nasa.gov
Save