• Bagnold, R. A., 1956: The flow of cohesionless grains in fluids. Philos. Trans. Roy. Soc. London, A249, 235297, doi:10.1098/rsta.1956.0020.

    • Search Google Scholar
    • Export Citation
  • Bagnold, R. A., 1973: The nature of saltation and of ‘bed-load’ transport in water. Proc. Roy. Soc. London, 332A, 473504, doi:10.1098/rspa.1973.0038.

    • Search Google Scholar
    • Export Citation
  • Bailard, J. A., and Inman D. L. , 1981: An energetics bedload model for a plane sloping beach: Local transport. J. Geophys. Res., 86, 20352043, doi:10.1029/JC086iC03p02035.

    • Search Google Scholar
    • Export Citation
  • Buscombe, D., and Masselink G. , 2006: Concepts in gravel beach dynamics. Earth Sci. Rev., 79, 3352, doi:10.1016/j.earscirev.2006.06.003.

    • Search Google Scholar
    • Export Citation
  • Das, B. M., 1990: Principles of Geotechnical Engineering. Cengage Learning, 665 pp.

  • DeVries, P., 2002: Bedload layer thickness and disturbance depth in gravel bed streams. J. Hydraul. Eng., 128, 983991, doi:10.1061/(ASCE)0733-9429(2002)128:11(983).

    • Search Google Scholar
    • Export Citation
  • Dillon, J., Zedel L. , and Hay A. E. , 2012: On the distribution of velocity measurements from pulse-to-pulse coherent Doppler sonar. IEEE J. Oceanic Eng., 37, 613625, doi:10.1109/JOE.2012.2204839.

    • Search Google Scholar
    • Export Citation
  • Ergenzinger, P., and Conrady J. , 1982: A new tracer technique for measuring bedload in natural channels. Catena, 9, 7780, doi:10.1016/S0341-8162(82)80006-4.

    • Search Google Scholar
    • Export Citation
  • Fredsøe, J., and Deigaard R. , 1992: Mechanics of Coastal Sediment Transport. Advanced Series on Ocean Engineering, Vol. 3, World Scientific, 392 pp.

    • Search Google Scholar
    • Export Citation
  • Gaeuman, D., and Jacobson R. B. , 2006: Acoustic bed velocity and bed load dynamics in a large sand bed river. J. Geophys. Res., 111, F02005, doi:10.1029/2005JF000411.

    • Search Google Scholar
    • Export Citation
  • Gomez, B., 1991: Bedload transport. Earth Sci. Rev., 31, 89132, doi:10.1016/0012-8252(91)90017-A.

  • Hay, A. E., Zedel L. , Craig R. , and Paul W. , 2008: Multi-frequency, pulse-to-pulse coherent Doppler sonar profiler. Proceedings of the IEEE/OES/CMTC Ninth Working Conference on Current Measurement Technology, IEEE, 2529.

  • Hay, A. E., Zedel L. , Cheel R. , and Dillon J. , 2012a: Observations of the vertical structure of turbulent oscillatory boundary layer above fixed roughness beds using a prototype wideband coherent Doppler profiler: 1. The oscillatory flow. J. Geophys. Res., 117, C03005, doi:10.1029/2011JC007113.

    • Search Google Scholar
    • Export Citation
  • Hay, A. E., Zedel L. , Cheel R. , and Dillon J. , 2012b: Observations of the vertical structure of turbulent oscillatory boundary layer above fixed roughness beds using a prototype wideband coherent Doppler profiler: 2. Turbulence and stress. J. Geophys. Res., 117, C03006, doi:10.1029/2011JC007114.

    • Search Google Scholar
    • Export Citation
  • Hay, A. E., Zedel L. , Cheel R. , and Dillon J. , 2012c: On the vertical and temporal structure of flow and stress within the turbulent oscillatory boundary layer above evolving sand ripples. Cont. Shelf Res., 46, 31–49.

    • Search Google Scholar
    • Export Citation
  • Hoekstra, P., Bell P. , van Santen P. , N. Roode, Levoy F. , and Whitehouse R. , 2004: Bedform migration and bedload transport on an intertidal shoal. Cont. Shelf Res., 24, 12491269, doi:10.1016/j.csr.2004.03.006.

    • Search Google Scholar
    • Export Citation
  • Hurther, D., Thorne P. D. , Bricault M. , Lemmin U. , and Barnoud J.-M. , 2011: A multi-frequency acoustic concentration and velocity profiler (ACVP) for boundary layer measurements of fine-scale flow and sediment transport processes. Coastal Eng., 58, 594605, doi:10.1016/j.coastaleng.2011.01.006.

    • Search Google Scholar
    • Export Citation
  • Kirchner, J. W., Dietrich W. E. , Iseya F. , and Ikeda H. , 1990: The variability of critical shear stress, friction angle and grain protrusion in water-worked sediments. Sedimentology, 37, 647672, doi:10.1111/j.1365-3091.1990.tb00627.x.

    • Search Google Scholar
    • Export Citation
  • Kostaschuk, R., Best J. , Villard P. , Peakall J. , and Franklin M. , 2005: Measuring flow velocity and sediment transport with an acoustic Doppler current profiler. Geomorphology, 68, 2537, doi:10.1016/j.geomorph.2004.07.012.

    • Search Google Scholar
    • Export Citation
  • Lemmin, U., Hurther D. , and Shen C. , 1999: A high resolution constant beam width pulse-to-pulse coherent 3-D acoustic Doppler profiling current meter for use in laboratory and environmental studies. Proceedings of the IEEE Sixth Working Conference on Current Measurement 1999, IEEE, 216220.

  • Liebault, F., and Piegay H. , 2001: Assessment of channel changes due to long-term bedload supply decrease, Roubion River, France. Geomorphology, 36, 167186, doi:10.1016/S0169-555X(00)00044-1.

    • Search Google Scholar
    • Export Citation
  • Masselink, G., and Hughes M. , 1998: Field investigation of sediment transport in the swash zone. Cont. Shelf Res., 18, 11791199, doi:10.1016/S0278-4343(98)00027-2.

    • Search Google Scholar
    • Export Citation
  • Nielsen, P., 1992: Coastal Bottom Boundary Layer and Sediment Transport. Advanced Series on Ocean Engineering, Vol. 4, World Scientific, 340 pp.

    • Search Google Scholar
    • Export Citation
  • Rennie, C. D., Millar R. G. , and Church M. A. , 2002: Measurement of bed load velocity using an acoustic Doppler current profiler. J. Hydraul. Eng., 128, 473483, doi:10.1061/(ASCE)0733-9429(2002)128:5(473).

    • Search Google Scholar
    • Export Citation
  • Shields, A., 1936: Anwendung der Ähnlichkeits-Mechanik und der Turbulenzforschung auf die Geschiebebewegung. Preuss. Versuchsanst. Wasserbau Schiffsbau, 26, 524526.

    • Search Google Scholar
    • Export Citation
  • Stark, N., Hanff H. , Svenson C. , Ernstsen V. B. , Lefebvre A. , Winter C. , and Kopf A. , 2011: Coupled penetrometer, MBES and ADCP assessments of tidal variations in surface sediment layer characteristics along active subaqueous dunes, Danish Wadden Sea. Geo-Mar. Lett., 31, 249258, doi:10.1007/s00367-011-0230-6.

    • Search Google Scholar
    • Export Citation
  • Stark, N., Hay A. E. , Guest T. , Hatcher M. G. , Cheel R. A. , Barclay D. J. , Zedel L. J. , and Lake C. B. , 2012: Three perspectives on bedload transport at a sandy gravel beach (Advocate Harbour, Nova Scotia) with focus on sediment properties. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract OS13F-01.

  • Sumer, B. M, and Fredsøe J. , 2002: The Mechanics of Scour in the Marine Environment. Advanced Series on Ocean Engineering, Vol. 17, World Scientific, 552 pp.

  • Traykovski, P. A., 1998: Appendix A: A initial study on using full spectrum pulsed Doppler to measure sand transport on and near the seafloor. Observations and modeling of sand transport in a wave dominated environment. Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 138–150. [Available online at https://darchive.mblwhoilibrary.org/bitstream/handle/1912/5341/Traykovski_thesis.pdf?sequence=1.]

  • Traykovski, P. A., Irish J. D. , and Lynch J. F. , 1998: Motivations for using a pulsed full spectrum Doppler to measure bedload and near-bottom suspended sediment transport. J. Acoust. Soc. Amer., 103, 2866, doi:10.1121/1.421624.

    • Search Google Scholar
    • Export Citation
  • Van Rijn, L. C., 1984: Sediment transport, part I: Bed load transport. J. Hydraul. Eng., 110, 14311456, doi:10.1061/(ASCE)0733-9429(1984)110:10(1431).

    • Search Google Scholar
    • Export Citation
  • Yalin, M. S., and Karahan E. , 1979: Steepness of sedimentary dunes. J. Hydraul. Div., 105, 381392.

  • Yang, F., Liu X. , Cao S. , and Huang E. , 2010: Bed load transport rates during scouring and armoring processes. J. Mt. Sci., 7, 215225, doi:10.1007/s11629-010-2013-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 0 0 0

Laboratory Measurements of Coarse Sediment Bedload Transport Velocity Using a Prototype Wideband Coherent Doppler Profiler (MFDop)

View More View Less
  • 1 Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
  • | 2 Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
Restricted access

Abstract

A prototype wideband coherent Doppler profiler (MFDop) was tested for measuring bedload velocity of different gravel and coarse-sand-sized fractions (d = 1–32 mm) in the laboratory. The sediment was spread out on a smooth-surface tray, and motion was initiated by tilting the tray at angles of α = 20°–39° from the horizontal. Particle velocities downslope (u), cross slope (υ), and vertical to the tray (w) were determined for different MFDop parameter settings, such as monostatic/bistatic configuration, acoustic beam angle, and pulse length. Video observations of bed particle velocity were made for comparison to the acoustic measurements. Velocities estimated using the MFDop equal to, on average, 71%–74% of the velocities determined using the video observations. Standard deviations ranged from 21% to 35%, including observed irregular motion. Three stages of sediment motion were observed: (i) single particles moving with u ≤ 5 cm s−1, (ii) varying motion of particles and particle groups with predominantly 5 cm s−1u ≤ 20 cm s−1, and (iii) fast sheetlike motion with u ≥ 20 cm s−1. The cross-slope velocity υ and the vertical velocity w were significantly smaller than u, hinting at slipping as the major particle motion rather than rolling or saltation. Comparisons between MFDop and video-determined velocities showed good agreement. Standard deviations for the MFDop velocity estimates ranged from 22% to 35%. The trials with different gravelly sediments and coarse sand revealed a significant influence of grain size, as well as grain shape impacting the initiation of sediment transport and transport velocities.

Current affiliation: Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

Current affiliation: Woods Hole Oceanographic Institute, Woods Hole, Massachusetts.

Corresponding author address: Nina Stark, Dept. of Civil and Environmental Engineering, Virginia Tech, 200 Patton Hall, Blacksburg, VA 24061. E-mail: ninas@vt.edu

Abstract

A prototype wideband coherent Doppler profiler (MFDop) was tested for measuring bedload velocity of different gravel and coarse-sand-sized fractions (d = 1–32 mm) in the laboratory. The sediment was spread out on a smooth-surface tray, and motion was initiated by tilting the tray at angles of α = 20°–39° from the horizontal. Particle velocities downslope (u), cross slope (υ), and vertical to the tray (w) were determined for different MFDop parameter settings, such as monostatic/bistatic configuration, acoustic beam angle, and pulse length. Video observations of bed particle velocity were made for comparison to the acoustic measurements. Velocities estimated using the MFDop equal to, on average, 71%–74% of the velocities determined using the video observations. Standard deviations ranged from 21% to 35%, including observed irregular motion. Three stages of sediment motion were observed: (i) single particles moving with u ≤ 5 cm s−1, (ii) varying motion of particles and particle groups with predominantly 5 cm s−1u ≤ 20 cm s−1, and (iii) fast sheetlike motion with u ≥ 20 cm s−1. The cross-slope velocity υ and the vertical velocity w were significantly smaller than u, hinting at slipping as the major particle motion rather than rolling or saltation. Comparisons between MFDop and video-determined velocities showed good agreement. Standard deviations for the MFDop velocity estimates ranged from 22% to 35%. The trials with different gravelly sediments and coarse sand revealed a significant influence of grain size, as well as grain shape impacting the initiation of sediment transport and transport velocities.

Current affiliation: Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

Current affiliation: Woods Hole Oceanographic Institute, Woods Hole, Massachusetts.

Corresponding author address: Nina Stark, Dept. of Civil and Environmental Engineering, Virginia Tech, 200 Patton Hall, Blacksburg, VA 24061. E-mail: ninas@vt.edu
Save