• Ardhuin, F., Marie L. , Rascle N. , Forget P. , and Roland A. , 2009: Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J. Phys. Oceanogr., 39, 28202838, doi:10.1175/2009JPO4169.1.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., and Lipa B. J. , 1997: Evolution of bearing determination in HF current mapping radars. Oceanography, 10, 7275, doi:10.5670/oceanog.1997.27.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., Evans M. , and Weber B. , 1977: Ocean surface currents mapped by radar. Science, 198, 138144, doi:10.1126/science.198.4313.138.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., Fernandez V. , Ferrer M. I. , Whelan C. , and Breivik O. , 2012: A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network. Ocean Dyn., 725–740, doi:10.1007/s10236-012-0521-0.

  • Chen, C., and Coauthors, 2014: Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea. J. Geophys. Res. Oceans, doi:10.1002/2013JC009351, in press.

  • Crombie, D., 1955: Doppler spectrum of the sea echo at 13.56 Mc./s. Nature, 175, 681682, doi:10.1038/175681a0.

  • Edson, J. B., and Coauthors, 2007: The coupled boundary layers and air–sea transfer experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356, doi:10.1175/BAMS-88-3-341.

    • Search Google Scholar
    • Export Citation
  • Emery, B., Washburn L. , and Harlan J. , 2004: Evaluating radial current measurements from CODAR high-frequency radars with moored current meters. J. Atmos. Oceanic Technol., 21, 12591271, doi:10.1175/1520-0426(2004)021<1259:ERCMFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fewings, M., Lentz S. , and Fredericks J. , 2008: Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf. J. Phys. Oceanogr., 38, 23582378, doi:10.1175/2008JPO3990.1.

    • Search Google Scholar
    • Export Citation
  • Ganju, N., Lentz S. , Kirincich A. , and Farrar J. , 2011: Complex mean circulation over the inner shelf south of Martha’s Vineyard revealed by observations and a high-resolution model. J. Geophys. Res.,116, C10036, doi:10.1029/2011JC007035.

  • Gerbi, G., Trowbridge J. , Edson J. , Plueddemann A. , Terray E. , and Fredericks J. , 2008: Measurements of momentum and heat transfer across the air–sea interface. J. Phys. Oceanogr., 38, 10541072, doi:10.1175/2007JPO3739.1.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2002: Lagrangian coherent structures from approximate velocity data. Phys. Fluids, 14, 18511861, doi:10.1063/1.1477449.

  • He, R., and Wilkin J. , 2006: Barotropic tides on the southeast New England shelf: A view from a hybrid data assimilative modeling approach. J. Geophys. Res., 111, C08002, doi:10.1029/2005JC003254.

    • Search Google Scholar
    • Export Citation
  • IOOS, 2011: IOOS in action: Deepwater Horizon oil spill response. NOAA, 2 pp. [Available online at http://www.ioos.noaa.gov/library/deepwater_horizon_051911.pdf.]

  • Kirincich, A., de Paolo T. , and Terrill E. , 2012: Improving HF radar estimates of surface currents using signal quality metrics, with application to the MVCO high-resolution radar system. J. Atmos. Oceanic Technol., 29, 13771390, doi:10.1175/JTECH-D-11-00160.1.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A., Lentz S. , Farrar J. , and Ganju N. , 2013: The spatial structure of tidal and mean circulation over the inner shelf south of Martha’s Vineyard, Massachusetts. J. Phys. Oceanogr.,43, 1940–1958, doi:10.1175/JPO-D-13-020.1.

    • Search Google Scholar
    • Export Citation
  • Kohut, J., Glenn S. , and Chant R. , 2004: Seasonal current variability on the New Jersey inner shelf. J. Geophys. Res.,109, C07S07, doi:10.1029/2003JC001963.

  • Kohut, J., Roarty H. , and Glenn S. , 2006: Characterizing observed environmental variability with HF Doppler radar surface current mappers and acoustic Doppler current profilers: Environmental variability in the coastal ocean. IEEE J. Oceanic Eng.,31, 876–884, doi:10.1109/JOE.2006.886095.

  • Kosro, P. M., 2005: On the spatial structure of coastal circulation off Newport, Oregon, during spring and summer 2001 in a region of varying shelf width. J. Geophys. Res.,110, C10S06, doi:10.1029/2004JC002769.

  • Large, W., and Pond S. , 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lekien, F., Coulliette C. , Mariano A. J. , Ryan E. H. , Shay L. K. , Haller G. , and Marsden J. E. , 2005: Pollution release tied to invariant manifolds: A case study for the coast of Florida. Physica D, 210, 120, doi:10.1016/j.physd.2005.06.023.

    • Search Google Scholar
    • Export Citation
  • Lentz, S., 2008: Observations and a model of the mean circulation over the Middle Atlantic Bight continental shelf. J. Phys. Oceanogr., 38, 12031221, doi:10.1175/2007JPO3768.1.

    • Search Google Scholar
    • Export Citation
  • Lentz, S., Fewings M. , Howd P. , Fredericks J. , and Hathaway K. , 2008: Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr., 38, 23412357, doi:10.1175/2008JPO3986.1.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., Treguier A.-M. , and Speer K. , 2002: Lagrangian eddy scales in the northern Atlantic Ocean. J. Phys. Oceanogr., 32, 24252440, doi:10.1175/1520-0485-32.9.2425.

    • Search Google Scholar
    • Export Citation
  • Molcard, A., Poulain P. , Forget P. , Griffa A. , Barbin Y. , Gaggelli J. , De Maistre J. C. , and Rixen M. , 2009: Comparison between VHF radar observations and data from drifter clusters in the Gulf of La Spezia (Mediterranean Sea). J. Mar. Syst., 78, S79–S89, doi:10.1016/j.jmarsys.2009.01.012.

    • Search Google Scholar
    • Export Citation
  • O’Donnell, J., and Coauthors, 2005: Integration of Coastal Ocean Dynamics Application Radar (CODAR) and Short-Term Predictive System (STPS) surface current estimates into the Search and Rescue Optimal Planning System (SAROPS). U.S. Coast Guard Final Rep. CG-D-01-2006, 163 pp. [Available online at http://www.dtic.mil/get-tr-doc/pdf?AD=ADA444766.]

  • Ohlmann, C., White P. , Washburn L. , Terrill E. , Emery B. , and Otero M. , 2007: Interpretation of coastal HF radar–derived surface currents with high-resolution drifter data. J. Atmos. Oceanic Technol., 24, 666–680, doi:10.1175/JTECH1998.1.

    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., Rypina I. I. , Brown M. G. , Beron-Vera F. J. , Kocak H. , Brand L. E. , Halliwell G. R. , and Shay L. K. , 2006: Persistent transport barrier on the west Florida shelf. Geophys. Res. Lett.,33, L22603, doi:10.1029/2006GL027800.

  • Paduan, J., and Graber H. , 1997: Introduction to high-frequency radar: Reality and myth. Oceanography, 10, 3639, doi:10.5670/oceanog.1997.18.

    • Search Google Scholar
    • Export Citation
  • Paduan, J., Kim K. , Cook M. , and Chavez F. , 2006: Calibration and validation of direction-finding high frequency radar ocean surface current observations. IEEE J. Oceanic Eng., 31, 862–875, doi:10.1109/JOE.2006.886195.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., Beardsley B. , and Lentz S. , 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, doi:10.1016/S0098-3004(02)00013-4.

    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., Gerin R. , and Mauri E. , 2009: Wind effects on drogued and undrogued drifters in the eastern Mediterranean. J. Phys. Oceanogr., 26, 11441156, doi:10.1175/2008JTECHO618.1.

    • Search Google Scholar
    • Export Citation
  • Ramp, S., Paduan J. , Shulman I. , Kindle J. , Bahr F. , and Chavez F. , 2005: Observations of upwelling and relaxation events in the northern Monterey Bay during August 2000. J. Geophys. Res., 110, C07013, doi:10.1029/2004JC002538.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., Pratt L. J. , Pullen J. , Levin J. , and Gordon A. , 2010: Chaotic advection in an archipelago. J. Phys. Oceanogr., 40, 19882006, doi:10.1175/2010JPO4336.1.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., Scott S. E. , Pratt L. J. , and Brown M. G. , 2011: Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures. Nonlinear Processes Geophys.,18, 977–987, doi:10.5194/npg-18-977-2011, 2011.

  • Samelson, R. M., and Wiggins S. , 2006: Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach. Interdisciplinary Applied Mathematics, Vol. 31, Springer-Verlag, 147 pp.

    • Search Google Scholar
    • Export Citation
  • Schmidt, R., 1986: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag.,34, 276–280, doi:10.1109/TAP.1986.1143830.

  • Shadden, S. C., Lekien F. , Paduan J. D. , Chavez F. P. , and Marsden J. E. , 2009: The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay. Deep-Sea Res. II, 56, 161–172, doi:10.1016/j.dsr2.2008.08.008.

    • Search Google Scholar
    • Export Citation
  • Shearman, R. K., and Lentz S. J. , 2004: Observations of tidal variability on the New England shelf. J. Geophys. Res., 109, C06010, doi:10.1029/2003JC001972.

    • Search Google Scholar
    • Export Citation
  • Stewart, R., and Joy J. , 1974: HF radio measurements of surface currents. Deep-Sea Res., 21, 10391049, doi:10.1016/0011-7471(74)90066-7.

    • Search Google Scholar
    • Export Citation
  • Ullman, D., and Codiga D. , 2004: Seasonal variation of a coastal jet in the Long Island Sound outflow region based on HF radar and Doppler current observations. J. Geophys. Res.,109, C07S06, doi:10.1029/2002JC001660.

  • Ullman, D., O’Donnell J. , Kohut J. , Fake T. , and Allen A. , 2006: Trajectory prediction using HF radar surface currents: Monte Carlo simulations of prediction uncertainties. J. Geophys. Res., 111, C12005, doi:10.1029/2006JC003715.

    • Search Google Scholar
    • Export Citation
  • Wilkin, J., 2006: The summertime heat budget and circulation of southeast New England shelf waters. J. Phys. Oceanogr., 36, 19972011, doi:10.1175/JPO2968.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 1 1 1

Eulerian and Lagrangian Correspondence of High-Frequency Radar and Surface Drifter Data: Effects of Radar Resolution and Flow Components

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

This study investigated the correspondence between the near-surface drifters from a mass drifter deployment near Martha’s Vineyard, Massachusetts, and the surface current observations from a network of three high-resolution, high-frequency radars to understand the effects of the radar temporal and spatial resolution on the resulting Eulerian current velocities and Lagrangian trajectories and their predictability. The radar-based surface currents were found to be unbiased in direction but biased in magnitude with respect to drifter velocities. The radar systematically underestimated velocities by approximately 2 cm s−1 due to the smoothing effects of spatial and temporal averaging. The radar accuracy, quantified by the domain-averaged rms difference between instantaneous radar and drifter velocities, was found to be about 3.8 cm s−1. A Lagrangian comparison between the real and simulated drifters resulted in the separation distances of roughly 1 km over the course of 10 h, or an equivalent separation speed of approximately 2.8 cm s−1. The effects of the temporal and spatial radar resolution were examined by degrading the radar fields to coarser resolutions, revealing the existence of critical scales (1.5–2 km and 3 h) beyond which the ability of the radar to reproduce drifter trajectories decreased more rapidly. Finally, the importance of the different flow components present during the experiment—mean, tidal, locally wind-driven currents, and the residual velocities—was analyzed, finding that, during the study period, a combination of tidal, locally wind-driven, and mean currents were insufficient to reliably reproduce, with minimal degradation, the trajectories of real drifters. Instead, a minimum combination of the tidal and residual currents was required.

Corresponding author address: Irina Rypina, Physical Oceanography, MS #21, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA 02543-1050. E-mail: irypina@whoi.edu

Abstract

This study investigated the correspondence between the near-surface drifters from a mass drifter deployment near Martha’s Vineyard, Massachusetts, and the surface current observations from a network of three high-resolution, high-frequency radars to understand the effects of the radar temporal and spatial resolution on the resulting Eulerian current velocities and Lagrangian trajectories and their predictability. The radar-based surface currents were found to be unbiased in direction but biased in magnitude with respect to drifter velocities. The radar systematically underestimated velocities by approximately 2 cm s−1 due to the smoothing effects of spatial and temporal averaging. The radar accuracy, quantified by the domain-averaged rms difference between instantaneous radar and drifter velocities, was found to be about 3.8 cm s−1. A Lagrangian comparison between the real and simulated drifters resulted in the separation distances of roughly 1 km over the course of 10 h, or an equivalent separation speed of approximately 2.8 cm s−1. The effects of the temporal and spatial radar resolution were examined by degrading the radar fields to coarser resolutions, revealing the existence of critical scales (1.5–2 km and 3 h) beyond which the ability of the radar to reproduce drifter trajectories decreased more rapidly. Finally, the importance of the different flow components present during the experiment—mean, tidal, locally wind-driven currents, and the residual velocities—was analyzed, finding that, during the study period, a combination of tidal, locally wind-driven, and mean currents were insufficient to reliably reproduce, with minimal degradation, the trajectories of real drifters. Instead, a minimum combination of the tidal and residual currents was required.

Corresponding author address: Irina Rypina, Physical Oceanography, MS #21, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA 02543-1050. E-mail: irypina@whoi.edu
Save