• Bundke, U., Nillius B. , Jaenicke R. , Wetter T. , Klein H. , and Bingemer H. , 2008: The Fast Ice Nucleus Chamber FINCH. Atmos. Res., 90, 180186, doi:10.1016/j.atmosres.2008.02.008.

    • Search Google Scholar
    • Export Citation
  • Finke, H., Gross M. , Waddington G. , and Huffman H. , 1954: Low-temperature thermal data for the nine normal paraffin hydrocarbons from octane to hexadcane. J. Amer. Chem. Soc., 76, 333341, doi:10.1021/ja01631a005.

    • Search Google Scholar
    • Export Citation
  • Fletcher, A. N., 1972: High-temperature contact nucleation of supercooled water by organic chemicals. J. Appl. Meteor., 11, 988993, doi:10.1175/1520-0450(1972)011<0988:HTCNOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fornea, A., Brooks S. , Dooley J. , and Saha A. , 2009: Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil. J. Geophys. Res.,114, D13201, doi:10.1029/2009JD011958.

  • Gokhale, N., and Goold, J. Jr., 1968: Droplet freezing by surface nucleation. J. Appl. Meteor., 7, 870874, doi:10.1175/1520-0450(1968)007<0870:DFBSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, S., Augustin S. , Clauss T. , Wex H. , Šantl-Temkiv T. , Voigtländer J. , Niedermeier D. , and Stratmann F. , 2013: Immersion freezing of ice nucleation active protein complexes. Atmos. Chem. Phys., 13, 57515766, doi:10.5194/acp-13-5751-2013.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, N., Kiselev A. , Rzesanke D. , Duft D. , and Leisner T. , 2013: Experimental quantification of contact freezing in an electrodynamic balance. Atmos. Meas. Tech., 6, 23732382, doi:10.5194/amt-6-2373-2013.

    • Search Google Scholar
    • Export Citation
  • Hussain, K., and Saunders C. P. R. , 1984: Ice nucleus measurement with a continuous flow chamber. Quart. J. Roy. Meteor. Soc., 110, 75–84, doi:10.1002/qj.49711046307.

    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., Stetzer O. , Lüönd F. , Welti A. , and Lohmann U. , 2011: Contact freezing experiments of kaolinite particles with cloud droplets. J. Geophys. Res.,116, D22202, doi:10.1029/2011JD015727.

  • Ladino, L. A., Stetzer O. , and Lohmann U. , 2013: Contact freezing: A review. Atmos. Chem. Phys. Discuss., 13, 78117869, doi:10.5194/acpd-13-7811-2013.

    • Search Google Scholar
    • Export Citation
  • López, M. L., and Ávila E. E. , 2013: Measurements of natural deposition ice nuclei in Crdoba, Argentina. Atmos. Chem. Phys., 13, 31113119, doi:10.5194/acp-13-3111-2013.

    • Search Google Scholar
    • Export Citation
  • Maki, L. R., Galyan E. L. , Chang-Chien M.-M. , and Caldwell D. R. , 1974: Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol., 28, 456459.

    • Search Google Scholar
    • Export Citation
  • Monier, J.-M., and Lindow S. E. , 2003: Pseudomonas syringae responds to the environment on leaves by cell size reduction. Phytopathology, 93, 12091216, doi:10.1094/PHYTO.2003.93.10.1209.

    • Search Google Scholar
    • Export Citation
  • Pitter, R., and Pruppacher H. , 1973: A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 99, 540550, doi:10.1002/qj.49709942111.

    • Search Google Scholar
    • Export Citation
  • Roberts, P., and Hallett J. , 1968: A laboratory study of the ice nucleating properties of some mineral dusts. Quart. J. Roy. Meteor. Soc.,94, 2534, doi:10.1002/qj.49709439904.

    • Search Google Scholar
    • Export Citation
  • Rogers, D., 1988: Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos. Res., 22, 149181, doi:10.1016/0169-8095(88)90005-1.

    • Search Google Scholar
    • Export Citation
  • Shaw, R., Durant A. , and Mi Y. , 2005: Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem., 109B, 98659868, doi:10.1021/jp0506336.

    • Search Google Scholar
    • Export Citation
  • Svensson, E., Delval C. , von Hessberg P. , Johnson M. , and Pettersson J. , 2009: Freezing of water droplets colliding with kaolinite particles. Atmos. Chem. Phys., 9, 42954300, doi:10.5194/acp-9-4295-2009.

    • Search Google Scholar
    • Export Citation
  • Tomlinson, E. M., and Fukuta N. , 1985: A new horizontal gradient, continuous flow, ice thermal diffusion chamber. J. Atmos. Oceanic Technol., 2, 448467, doi:10.1175/1520-0426(1985)002<0448:ANHGCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yun, Y., and Penner J. E. , 2012: Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds. J. Geophys. Res., 117, D07203, doi:10.1029/2011JD016506.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 2 2 2

A Technique to Measure Ice Nuclei in the Contact Mode

View More View Less
  • 1 Michigan Technological University, Houghton, Michigan
Restricted access

Abstract

This study presents a new technique to study ice nucleation by aerosols in the contact mode. Contact freezing depends upon the interaction of a supercooled droplet of water and an aerosol particle, with the caveat that the particle must be at the air–water interface. To measure nucleation catalyzed in this mode, the technique employs water droplets that are supercooled via a temperature-controlled copper stage, then pulls aerosol-laden air past them. Particles deposit out of the airstream and come into contact with the surface of the droplet. The probability that a particle–droplet collision initiates a freezing event, necessitating knowledge of the total number of particles that collide with the droplet, is reported. In tests of the technique, ice nucleation by the bacteria Pseudomonas syringae is found to be more efficient in the contact mode than in the immersion mode by two orders of magnitude at −3°C with the difference diminishing by −8°C.

Corresponding author address: Will Cantrell, Dept. of Physics, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931. E-mail: cantrell@mtu.edu

Abstract

This study presents a new technique to study ice nucleation by aerosols in the contact mode. Contact freezing depends upon the interaction of a supercooled droplet of water and an aerosol particle, with the caveat that the particle must be at the air–water interface. To measure nucleation catalyzed in this mode, the technique employs water droplets that are supercooled via a temperature-controlled copper stage, then pulls aerosol-laden air past them. Particles deposit out of the airstream and come into contact with the surface of the droplet. The probability that a particle–droplet collision initiates a freezing event, necessitating knowledge of the total number of particles that collide with the droplet, is reported. In tests of the technique, ice nucleation by the bacteria Pseudomonas syringae is found to be more efficient in the contact mode than in the immersion mode by two orders of magnitude at −3°C with the difference diminishing by −8°C.

Corresponding author address: Will Cantrell, Dept. of Physics, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931. E-mail: cantrell@mtu.edu
Save