• Banks, C. J., Gommenginger C. P. , Srokosz M. A. , and Snaith H. M. , 2012: Validating SMOS ocean surface salinity in the Atlantic with Argo and operational ocean model data. IEEE Trans. Geosci. Remote Sens., 50, 16881702, doi:10.1109/tgrs.2011.2167340.

    • Search Google Scholar
    • Export Citation
  • Boutin, J., and Coauthors, 2011: Sea surface salinity from SMOS satellite and in situ observations: Surface autonomous drifters in the tropical Atlantic Ocean. Extended Abstracts, First SMOS Science Workshop, Arles, France, ESA and CNES. [Available online at http://earth.eo.esa.int/workshops/smos_science_workshop/SESSION_3_OCEAN_SALINITY/J.Boutin_SMOS_Satellite_Sea_Surface_Salinity_situ.pdf.]

  • Boutin, J., Martin N. , Reverdin G. , Xin X. , and Gaillard F. , 2012a: Sea surface freshening inferred from SMOS and Argo salinity: Impact of rain. Ocean Sci. Discuss., 9, 33313357, doi:10.5194/osd-9-3331-2012.

    • Search Google Scholar
    • Export Citation
  • Boutin, J., Martin N. , Xiaobin Y. , Font J. , Reul N. , and Spurgeon P. , 2012b: First assessment of SMOS data over open ocean: Part II—Sea surface salinity. IEEE Trans. Geosci. Remote Sens., 50, 16621675, doi:10.1109/tgrs.2012.2184546.

    • Search Google Scholar
    • Export Citation
  • Cravatte, S., Delcroix T. , Zhang D. , McPhaden M. , and LeLoup J. , 2009: Observed freshening and warming of the western Pacific warm pool. Climate Dyn., 33, 565589, doi:10.1007/s00382-009-0526-7.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and McPhaden M. J. , 1999: Diurnal cycle of rainfall and surface salinity in the western Pacific warm pool. Geophys. Res. Lett., 26, 34653468.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., Cravatte S. , and McPhaden M. J. , 2007: Decadal variations and trends in tropical Pacific sea surface salinity since 1970. J. Geophys. Res., 112, C03012, doi:10.1029/2006JC003801.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and Wijffels S. E. , 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362.

    • Search Google Scholar
    • Export Citation
  • Font, J., and Coauthors, 2010: SMOS: The challenging sea surface salinity measurements from space. Proc. IEEE, 98, 649665.

  • Font, J., and Coauthors, 2013: SMOS first data analysis for sea surface salinity determination. Int. J. Remote Sens., 34, 36543670, doi:10.1080/01431161.2012.716541.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and Giulivi C. F. , 2008: Sea surface salinity trends over fifty years within the subtropical North Atlantic. Oceanography, 21, 2231.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., Lumpkin R. , and Carton J. A. , 2011: Spurious trends in global surface drifter currents. Geophys. Res. Lett., 38, L10606, doi:10.1029/2011GL047393.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., Lumpkin R. , Carton J. A. , and Coles V. , 2014: Year-to-year salinity changes in the Amazon plume: Contrasting 2011 and 2012 Aquarius/SACD and SMOS satellite data. Remote Sens. Environ., 140, 1422, doi:10.1016/j.rse.2013.08.033.

    • Search Google Scholar
    • Export Citation
  • Henocq, C., Boutin J. , Petitcolin F. , Reverdin G. , Arnault S. , and Lattes P. , 2010: Vertical variability of near-surface salinity in the tropics: Consequences for L-band radiometer calibration and validation. J. Atmos. Oceanic Technol., 27, 192209.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and Wijffels S. E. , 2011: Ocean density change contributions to sea level rise. Oceanography, 24, 112121.

  • Lagerloef, G., and Coauthors, 2010: Resolving the global surface salinity field and variations by blending satellite and in situ observations. Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, Vol. 2, J. Hall, D. E. Harrison, and D. Stammer, Eds., ESA Publ. WPP-306, doi:10.5270/OceanObs09.cwp.51.

  • Reul, N., Tenerelli J. , Boutin J. , Chapron B. , Paul F. , Brion E. , Gaillard F. , and Archer O. , 2012: Overview of the first SMOS sea surface salinity products. Part I: Quality assessment for the second half of 2010. IEEE Trans. Geosci. Remote Sens., 50, 16361647, doi:10.1109/tgrs.2012.2188408.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., 2010: North Atlantic subpolar gyre surface variability (1895–2009). J. Climate,23, 4571–4584.

  • Reverdin, G., Boutin J. , Lourenco A. , Blouch P. , Rolland J. , Niiler P. P. , Schuba W. , and Rios A. , 2007: Surface salinity measurements—COSMOS 2005 experiment in the Bay of Biscay. J. Atmos. Oceanic Technol., 24, 16431654.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., Morisset S. , Boutin J. , and Martin N. , 2012: Rain-induced variability of near sea-surface T and S from drifter data. J. Geophys. Res., 117, C02032, doi:10.1029/2011JC007549.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., and Coauthors, 2013: Near–sea surface temperature stratification from SVP drifters. J. Atmos. Oceanic Technol., 30, 1867–1883.

    • Search Google Scholar
    • Export Citation
  • Riser, S. C., Ren L. , and Wong A. , 2008: Salinity in Argo. Oceanography, 21, 5667.

  • Roemmich, D., and Coauthors, 2009: Argo: The challenge of continuing 10 years of progress. Oceanography, 22, 4655.

  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21, 1219.

  • Singh, A., and Delcroix T. , 2011: Estimating the effects of ENSO upon the observed freshening trends of the western tropical Pacific Ocean. Geophys. Res. Lett., 38, L21607, doi:10.1029/2011GL049636.

    • Search Google Scholar
    • Export Citation
  • Terray, L., Corre L. , Cravatte S. , Delcroix T. , Reverdin G. , and Ribes A. , 2012: Near-surface salinity as nature’s rain gauge to detect human influence on the tropical water cycle. J. Climate, 25, 958977.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., Moore R. K. , and Fung A. K. , 1986: From Theory to Applications. Vol. 3, Microwave Remote Sensing – Active and Passive, Artech House, 1120 pp.

  • Von Schuckmann, K., and Le Traon P.-Y. , 2011: How well can we derive global ocean indicators from Argo data. Ocean Sci., 7, 783791, doi:10.5194/os-7-783-2011.

    • Search Google Scholar
    • Export Citation
  • Von Schuckmann, K., Gaillard F. , and Le Traon P.-Y. , 2009: Global hydrographic variability patterns during 2003–2008. J. Geophys. Res., 114, C09007, doi:10.1029/2008JC005237.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Zhang X. , 2012: Ocean haline skin layer and turbulent surface convections. J. Geophys. Res., 117, C04017, doi:10.1029/2011JC007464.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 3 3 3

Validation of Salinity Data from Surface Drifters

View More View Less
  • 1 * LOCEAN/IPSL, UMR CNRS/UPMC/IRD/MNHN, Paris, France
  • | 2 Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
  • | 3 Laboratoire de Physique des Océans, Ifremer, Plouzané, France
  • | 4 Centre de Météorologie Marine, Météo-France, Brest, France
  • | 5 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
Restricted access

Abstract

Salinity measurements from 119 surface drifters in 2007–12 were assessed; 80% [Surface Velocity Program with a barometer with a salinity sensor (SVP-BS)] and 75% [SVP with salinity (SVP-S)] of the salinity data were found to be usable, after editing out some spikes. Sudden salinity jumps are found in drifter salinity records that are not always associated with temperature jumps, in particular in the wet tropics. A method is proposed to decide whether and how to correct those jumps, and the uncertainty in the correction applied. Northeast of South America, in a region influenced by the Amazon plume and fresh coastal water, drifter salinity is very variable, but a comparison with data from the Soil Moisture and Ocean Salinity satellite suggests that this variability is usually reasonable. The drifter salinity accuracy is then explored based on comparisons with data from Argo floats and from thermosalinographs (TSGs) of ships of opportunity. SVP-S/SVP-BS drifter records do not usually present significant biases within the first 6 months, but afterward biases sometimes need to be corrected (altogether, 16% of the SVP-BS records). Biases start earlier after 3 months for drifters not protected by antifouling paint. For the few drifters for which large corrections were applied to portions of the record, the accuracy cannot be proven to be better than 0.1 psu, and it cannot be proven to be better than 0.5 psu for data in the largest variability area off northeast South America. Elsewhere, after excluding portions of the records with suspicious salinity jumps or when large corrections were applied, the comparisons rule out average biases in individual drifter salinity record larger than 0.02 psu (midlatitudes) and 0.05 psu (tropics).

Corresponding author address: Gilles Reverdin, LOCEAN, 4 Place Jussieu, 75252 Paris CEDEX 05, France. E-mail: gilles.reverdin@locean-ipsl.upmc.fr

Abstract

Salinity measurements from 119 surface drifters in 2007–12 were assessed; 80% [Surface Velocity Program with a barometer with a salinity sensor (SVP-BS)] and 75% [SVP with salinity (SVP-S)] of the salinity data were found to be usable, after editing out some spikes. Sudden salinity jumps are found in drifter salinity records that are not always associated with temperature jumps, in particular in the wet tropics. A method is proposed to decide whether and how to correct those jumps, and the uncertainty in the correction applied. Northeast of South America, in a region influenced by the Amazon plume and fresh coastal water, drifter salinity is very variable, but a comparison with data from the Soil Moisture and Ocean Salinity satellite suggests that this variability is usually reasonable. The drifter salinity accuracy is then explored based on comparisons with data from Argo floats and from thermosalinographs (TSGs) of ships of opportunity. SVP-S/SVP-BS drifter records do not usually present significant biases within the first 6 months, but afterward biases sometimes need to be corrected (altogether, 16% of the SVP-BS records). Biases start earlier after 3 months for drifters not protected by antifouling paint. For the few drifters for which large corrections were applied to portions of the record, the accuracy cannot be proven to be better than 0.1 psu, and it cannot be proven to be better than 0.5 psu for data in the largest variability area off northeast South America. Elsewhere, after excluding portions of the records with suspicious salinity jumps or when large corrections were applied, the comparisons rule out average biases in individual drifter salinity record larger than 0.02 psu (midlatitudes) and 0.05 psu (tropics).

Corresponding author address: Gilles Reverdin, LOCEAN, 4 Place Jussieu, 75252 Paris CEDEX 05, France. E-mail: gilles.reverdin@locean-ipsl.upmc.fr
Save