• Antoniou, I., Joergensen H. E. , Ormel F. , Bradley S. , von Hünerbein S. , Emeis S. , and Warmbier G. , 2003: On the theory of sodar measurement techniques. Risø DTU National Laboratory Rep. Risø-R-1410 (EN), 60 pp.

  • Balsley, B. B., and Gage K. , 1982: On the use of radars for operational profiling. Bull. Amer. Meteor. Soc., 63, 10091018, doi:10.1175/1520-0477(1982)063<1009:OTUORF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., Brundage K. J. , and Morone L. L. , 1994: Implementation of the Rapid Update Cycle. Part I: Analysis/model description. NOAA/NWS Tech. Procedures Bull. 416, 16 pp.

  • Botnick, A. M., and Fedorovich E. , 2008: Large eddy simulation of atmospheric convective boundary layer with realistic environmental forcings. Quality and Reliability of Large-Eddy Simulations, J. Meyers, B. Geurts, and P. Sagaut, Eds., ERCOFTAC Series, Vol. 12, Springer Verlag, 193–204.

  • Bradley, S. G., 1999: Use of coded waveforms for sodar systems. Meteor. Atmos. Phys., 71, 1523, doi:10.1007/s007030050039.

  • Bradley, S. G., 2008a: Atmospheric Acoustic Remote Sensing.CRC Press, 296 pp.

  • Bradley, S. G., 2008b: Wind speed errors for lidars and sodars in complex terrain. IOP Conf. Ser.: Earth Environ. Sci.,1, 012061, doi:10.1088/1755-1315/1/1/012061.

  • Bradley, S. G., 2012: The noise part of sodar signal-to-noise. Extended Abstracts, 16th Int. Symp. for the Advancement of Boundary-Layer Remote Sensing, Boulder, CO, ISARS, 271–274. [Available online at http://www.esrl.noaa.gov/psd/events/2012/isars/pdf/isars2012-abstractVolume.pdf.]

  • Bradley, S. G., 2013: Aspects of the correlation between sodar and mast instrument winds. J. Atmos. Oceanic Technol., 30, 22412247, doi:10.1175/JTECH-D-12-00256.1.

    • Search Google Scholar
    • Export Citation
  • Capsoni, C., D’Amico M. , and Nebuloni R. , 2001: A multiparameter polarimetric radar simulator. J. Atmos. Oceanic Technol., 18, 17991809, doi:10.1175/1520-0426(2001)018<1799:AMPRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheong, B. L., Hoffman M. W. , and Palmer R. D. , 2004: Efficient atmospheric simulation for high-resolution radar imaging applications. J. Atmos. Oceanic Technol., 21, 374378, doi:10.1175/1520-0426(2004)021<0374:EASFHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheong, B. L., Palmer R. D. , and Xue M. , 2008: A time series weather radar simulator based on high-resolution atmospheric models. J. Atmos. Oceanic Technol., 25, 230243, doi:10.1175/2007JTECHA923.1.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E., Ackerman T. , and Babb D. , 1996: Ground-based remote sensing of cloud properties using millimeter-wave radar. Radiation and Water in the Climate System: Remote Measurements, E. Raschke, Ed., NATO ASI Series I, Vol. 45, Springer, 323–366.

  • Cook, D. R., and Pekour M. S. , 2008: Eddy correlation flux measurement system handbook. DOE Tech. Rep. DOE/SC-ARM/TR-05, 15 pp. [Available online at http://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/Z_instruments/ecor_handbook.pdf.]

  • Crescenti, G. H., 1997: A look back on two decades of Doppler sodar comparison studies. Bull. Amer. Meteor. Soc., 78, 651673, doi:10.1175/1520-0477(1997)078<0651:ALBOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layer derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., Nieuwstadt F. T. M. , and Kaiser R. , 2001: Numerical and laboratory study of horizontally evolving convective boundary layer. Part I: Transition regimes and development of the mixed layer. J. Atmos. Sci., 58, 7086, doi:10.1175/1520-0469(2001)058<0070:NALSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., Conzemius R. , and Mironov D. , 2004a: Convective entrainment into a shear-free, linearly stratified atmosphere: Bulk models reevaluated through large eddy simulations. J. Atmos. Sci., 61, 281295, doi:10.1175/1520-0469(2004)061<0281:CEIASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., and Coauthors, 2004b: Entrainment into sheared convective boundary layers as predicted by different large eddy simulation codes. Preprints, 16th Symp. on Boundary Layers and Turbulence, Portland, ME, Amer. Meteor. Soc., P4.7. [Available online at https://ams.confex.com/ams/BLTAIRSE/techprogram/paper_78656.htm.]

  • Gibbs, J. A., Fedorovich E. , and van Eijk A. M. J. , 2011: Evaluating Weather Research and Forecasting (WRF) model predictions of turbulent flow parameters in a dry convective boundary layer. J. Appl. Meteor. Climatol., 50, 24292444, doi:10.1175/2011JAMC2661.1.

    • Search Google Scholar
    • Export Citation
  • Greenhut, G. K., and Mastrantonio G. , 1989: Turbulence kinetic energy budget profiles derived from Doppler sodar measurements. J. Appl. Meteor., 28, 99106, doi:10.1175/1520-0450(1989)028<0099:TKEBPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • ISO, 1993: Acoustics—Attenuation of sound during propagation outdoors—Part 1: Calculation of the absorption of sound by the atmosphere. International Standards Organization Rep. ISO9613-1:1993(E), 26 pp.

  • Jung, Y., Zhang G. , and Xue M. , 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245, doi:10.1175/2007MWR2083.1.

    • Search Google Scholar
    • Export Citation
  • Kallistratova, M. A., 1997: Physical grounds for acoustic remote sensing of the boundary layer. Acoustic Remote Sensing Application, S. P. Singal, Ed., Lecture Notes in Earth Sciences, Vol. 69, Springer Verlag, 3–34.

  • Kallistratova, M. A., and Coulter R. L. , 2004: Application of sodars in the study and monitoring of the environment. Meteor. Atmos. Phys., 85, 2137.

    • Search Google Scholar
    • Export Citation
  • Koscielny, A. J., Doviak R. J. , and Zrnić D. S. , 1984: An evaluation of the accuracy of some radar wind profiling techniques. J. Atmos. Oceanic Technol., 1, 309320, doi:10.1175/1520-0426(1984)001<0309:AEOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Little, C. G., 1969: Acoustic methods for the remote probing of the lower atmosphere. Proc. IEEE, 57, 571578, doi:10.1109/PROC.1969.7010.

    • Search Google Scholar
    • Export Citation
  • Masri, P., and Bateman A. , 1995: Identification of nonstationary audio signals using the FFT, with application to analysis-based synthesis of sound. IEEE Colloquium on Audio Engineering Digest, Vol. 1995/089, IEEE, 11/1–11/6.

  • May, P. T., Strauch R. G. , Moran K. P. , and Ecklund W. L. , 1990: Temperature sounding by RASS with wind profiler radars: A preliminary study. IEEE Trans. Geosci. Remote Sens., 28, 1928, doi:10.1109/36.45742.

    • Search Google Scholar
    • Export Citation
  • May, R. M., Biggerstaff M. I. , and Xue M. , 2007: A Doppler radar emulator with an application to the detectability of tornadic signatures. J. Atmos. Oceanic Technol., 24, 19731996, doi:10.1175/2007JTECHA882.1.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., Sullivan P. P. , Wuertz D. B. , Hill R. J. , Cohn S. A. , Lenschow D. H. , and Doviak R. J. , 1999: First synthesis of wind-profiler signals on the basis of large-eddy simulation data. Radio Sci., 34, 1437–1459, doi:10.1029/1999RS900090.

    • Search Google Scholar
    • Export Citation
  • Neff, W. D., 1988: Observations of complex terrain flows using acoustic sounders: Echo interpretation. Bound.-Layer Meteor., 42, 207228, doi:10.1007/BF00123813.

    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., Larsen M. F. , Sheppard E. L. , Fukao S. , Yamamoto M. , Tsuda T. , and Kato S. , 1993: Poststatistic steering wind estimation in the troposphere and lower stratosphere. Radio Sci., 28, 261271, doi:10.1029/93RS00279.

    • Search Google Scholar
    • Export Citation
  • Pan, N., 2003: Excess attenuation of an acoustic beam by turbulence. J. Acoust. Soc. Amer., 114, 31023111, doi:10.1121/1.1628679.

  • Scipión, D. E., Botnick A. M. , Palmer R. D. , Chilson P. B. , and Fedorovich E. , 2008: Inter-comparison of retrieved wind fields from large-eddy simulations and radar measurements in the convective boundary layer. IOP Conf. Ser.: Earth Environ. Sci.,1, 012003, doi:10.1088/1755-1315/1/1/012003.

  • Scipión, D. E., Palmer R. D. , Chilson P. B. , Fedorovich E. , and Botnick A. M. , 2009: Retrieval of convective boundary layer wind fields statistics from radar profiler measurements in conjunction with large eddy simulations. Meteor. Z., 18, 175187, doi:10.1127/0941-2948/2009/0371.

    • Search Google Scholar
    • Export Citation
  • Soler, M. R., Hinojosa J. , Bravo M. , Pino D. , and de Arellano J. V.-G. , 2003: Analyzing the basic features of different complex terrain flows by means of a Doppler sodar and a numerical model: Some implications for air pollution problems. Meteor. Atmos. Phys., 85, 141154.

    • Search Google Scholar
    • Export Citation
  • Tatarskii, V. I., 1971: The Effects of the Turbulent Atmosphere on Wave Propagation.Kefer Press, 472 pp.

  • Yu, T.-Y., and Palmer R. D. , 2001: Atmospheric radar imaging using spatial and frequency diversity. Radio Sci., 36, 14931504, doi:10.1029/2000RS002622.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 1 1 1

A Time Series Sodar Simulator Based on Large-Eddy Simulation

View More View Less
  • 1 School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma
Restricted access

Abstract

A sodar simulator capable of producing time series data emulating sodar signals has been developed and tested. The atmospheric fields used to populate the sodar simulator are taken from output of a large-eddy simulation code. The characteristics of the sodar (number and zenith angle of beams, beamwidth, transmit frequency, range resolution, etc.) are defined by the user to allow emulation of existing systems. The range of the reflected acoustic signal is calculated based upon a temperature-dependent speed of sound. Realistic acoustic background noise is simulated using filtered white noise. The raw acoustic time series data are processed using a Fourier transform to yield acoustic Doppler spectra, from which the radial velocities are calculated. The design of the simulator allows for the testing of and comparisons between various signal-processing techniques and averaging periods. An example case of feeding the sodar simulator with large-eddy simulation data representative of a developing convective boundary layer is presented and discussed.

Corresponding author address: Charlotte Wainwright, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. E-mail: charlotte.wainwright@ou.edu

Abstract

A sodar simulator capable of producing time series data emulating sodar signals has been developed and tested. The atmospheric fields used to populate the sodar simulator are taken from output of a large-eddy simulation code. The characteristics of the sodar (number and zenith angle of beams, beamwidth, transmit frequency, range resolution, etc.) are defined by the user to allow emulation of existing systems. The range of the reflected acoustic signal is calculated based upon a temperature-dependent speed of sound. Realistic acoustic background noise is simulated using filtered white noise. The raw acoustic time series data are processed using a Fourier transform to yield acoustic Doppler spectra, from which the radial velocities are calculated. The design of the simulator allows for the testing of and comparisons between various signal-processing techniques and averaging periods. An example case of feeding the sodar simulator with large-eddy simulation data representative of a developing convective boundary layer is presented and discussed.

Corresponding author address: Charlotte Wainwright, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. E-mail: charlotte.wainwright@ou.edu
Save