• BIPM, 2008: Evaluation of measurement data—Guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology, Bureau International des Poids et Mesures, 120 pp. [Available online at http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf.]

  • Clark, L. G., and DiBattista J. D. , 1978: Space qualification of optical instruments using the NASA Long Duration Exposure Facility. Opt. Eng., 17, 175547, doi:10.1117/12.7972276.

    • Search Google Scholar
    • Export Citation
  • ESA, 2011: Research announcement for International Space Station experiments relevant to study of global climate change. European Space Agency, Directorate of Human Spaceflight and Operations, Directorate of Earth Observation Programmes, Noordwijk, Netherlands, 22 pp. [Available online at http://wsn.spaceflight.esa.int/docs/201107/ESA-ISS-Climate-Change-Experiments-Research-Announcement.pdf.]

  • Fest, E. C., 2009: VIIRS polarization sensitivity testing and analysis. Polarization Science and Remote Sensing IV, J. A. Shaw and J. Scott Tyo, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7461), 746102, doi:10.1117/12.828154.

  • Fox, N. P., and Coauthors, 2003: Traceable radiometry underpinning terrestrial- and helio-studies (TRUTHS). Sensors, Systems, and Next-Generation Satellites VI, H. Fujisada et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4881), 395–406, doi:10.1117/12.462438.

  • Fox, N. P., Kaiser-Weiss A. , Schmutz W. , Thome K. , Young D. , Wielicki B. , Winkler R. , and Woolliams E. , 2011: Accurate radiometry from space: An essential tool for climate studies. Philos. Trans. Roy. Soc. London, A369, 40284063, doi:10.1098/rsta.2011.0246.

    • Search Google Scholar
    • Export Citation
  • Goldberg, M., and Coauthors, 2011: The Global Space-Based Inter-Calibration System. Bull. Amer. Meteor. Soc., 92, 467475, doi:10.1175/2010BAMS2967.1.

    • Search Google Scholar
    • Export Citation
  • Gomez, S., 2010: GNC performance requirements and predicted performance estimates. Memo. EG-DIV-10-040, NASA, Johnson Space Center, 2 pp.

  • Leroy, S. S., Anderson J. G. , and Ohring G. , 2008: Climate signal detection times and constraints on climate benchmark accuracy requirements. J. Climate, 21, 841846, doi:10.1175/2007JCLI1946.1.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., Doelling D. R. , Nguyen L. , Miller W. F. , and Chakrapani V. , 2008: Assessment of the visible channel calibrations of the VIRS on TRMM and MODIS on Aqua and Terra. J. Atmos. Oceanic Technol., 25, 385400, doi:10.1175/2007JTECHA1021.1.

    • Search Google Scholar
    • Export Citation
  • Nadal, F., and Bréon F.-M. , 1999: Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements. IEEE Trans. Geosci. Remote Sens., 37, 17091718, doi:10.1109/36.763292.

    • Search Google Scholar
    • Export Citation
  • NASA, 2007: Overview of attached payload accommodations and environments on the International Space Station. NASA Tech. Publ. TP-2007-214768, 40 pp. [Available online at http://www.nasa.gov/pdf/190373main_TP-2007-214768.pdf.]

  • NASA, cited2011: Announcement of Opportunity for the Earth System Science Pathfinder Program: Earth Venture-2. Science Mission Directorate, Solicitation NNH11ZDA012O. [Available online at https://www.fbo.gov/spg/NASA/HQ/OPHQDC/NNH11ZDA012O/listing.html.]

  • NASA, 2012: 2012 annual report. National Aeronautics and Space Administration, Earth Science Technology Office, 16 pp. [Available online at http://esto.nasa.gov/files/AnnualReports/2012ESTOAnnualReport.pdf.]

  • National Research Council, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. National Academies Press, 456 pp.

  • Roithmayr, C. M., and Speth P. W. , 2012: Analysis of opportunities for intercalibration between two spacecraft. Advances in Engineering Research, V. M. Petrova, Ed., Vol. 1, Nova Science Publishers, 409–436.

  • Roithmayr, C. M., Lukashin C. , Speth P. W. , Kopp G. , Thome K. J. , Wielicki B. A. , and Young D. F. , 2014: CLARREO approach for reference intercalibration of reflected solar sensors: On-orbit data matching and sampling. IEEE Trans. Geosci. Remote Sens., 52, doi:10.1109/TGRS.2014.2302397.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., Barkstrom B. R. , Harrison E. F. , Lee R. B. , Smith G. L. , and Cooper J. E. , 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., Doelling D. R. , Young D. F. , Loeb N. G. , Garber D. P. , and MacDonnell D. G. , 2008: Climate quality broadband and narrowband solar reflected radiance calibration between sensors in orbit. 2008 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, Vol. 1, IEEE, I-257–I-260, doi:10.1109/IGARSS.2008.4778842.

  • Wielicki, B. A., and Coauthors, 2013: Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc., 94, 15191539, doi:10.1175/BAMS-D-12-00149.1.

    • Search Google Scholar
    • Export Citation
  • Xiong, X., Che N. , and Barnes W. L. , 2006a: Terra MODIS on-orbit spectral characterization and performance. IEEE Trans. Geosci. Remote Sens., 44, 21982206, doi:10.1109/TGRS.2006.872083.

    • Search Google Scholar
    • Export Citation
  • Xiong, X., Che N. , Pan C. , Xie X. , Sun J. , Barnes W. L. , and Guenther B. , 2006b: Results and lessons from MODIS reflective solar bands calibration: Pre-launch to on-orbit. Earth Observing Systems XI, J. J. Butler, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 6296), 629607, doi:10.1117/12.679144.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 1 1 1

Opportunities to Intercalibrate Radiometric Sensors from International Space Station

View More View Less
  • 1 NASA Langley Research Center, Hampton, Virginia
  • | 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado
Restricted access

Abstract

Highly accurate measurements of Earth’s thermal infrared and reflected solar radiation are required for detecting and predicting long-term climate change. Consideration is given to the concept of using the International Space Station to test instruments and techniques that would eventually be used on a dedicated mission, such as the Climate Absolute Radiance and Refractivity Observatory (CLARREO). In particular, a quantitative investigation is performed to determine whether it is possible to use measurements obtained with a highly accurate (0.3%, with 95% confidence) reflected solar radiation spectrometer to calibrate similar, less accurate instruments in other low Earth orbits. Estimates of numbers of samples useful for intercalibration are made with the aid of yearlong simulations of orbital motion. Results of this study support the conclusion that the International Space Station orbit is ideally suited for the purpose of intercalibration between spaceborne sensors.

Corresponding author address: Constantine Lukashin, NASA Langley Research Center, MS 420, Hampton, VA 23681. E-mail: constantine.lukashin-1@nasa.gov

Abstract

Highly accurate measurements of Earth’s thermal infrared and reflected solar radiation are required for detecting and predicting long-term climate change. Consideration is given to the concept of using the International Space Station to test instruments and techniques that would eventually be used on a dedicated mission, such as the Climate Absolute Radiance and Refractivity Observatory (CLARREO). In particular, a quantitative investigation is performed to determine whether it is possible to use measurements obtained with a highly accurate (0.3%, with 95% confidence) reflected solar radiation spectrometer to calibrate similar, less accurate instruments in other low Earth orbits. Estimates of numbers of samples useful for intercalibration are made with the aid of yearlong simulations of orbital motion. Results of this study support the conclusion that the International Space Station orbit is ideally suited for the purpose of intercalibration between spaceborne sensors.

Corresponding author address: Constantine Lukashin, NASA Langley Research Center, MS 420, Hampton, VA 23681. E-mail: constantine.lukashin-1@nasa.gov
Save