• Ackerman, T. P., Liou K.-N. , Valero F. P. J. , and Pfister L. , 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623, doi:10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bock, O., and Nuret M. , 2009: Verification of NWP model analyses and radiosonde humidity data with GPS precipitable water vapor estimates during AMMA. Wea. Forecasting, 24, 10851101, doi:10.1175/2009WAF2222239.1.

    • Search Google Scholar
    • Export Citation
  • Bock, O., Bouin M.-N. , Walpersdorf A. , Lafore J. P. , Janicot S. , Guichard F. , and Agusti-Panareda A. , 2007: Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalysis over Africa. Quart. J. Roy. Meteor. Soc., 133B, 20112027, doi:10.1002/qj.185.

    • Search Google Scholar
    • Export Citation
  • Boukabara, S.-A., Garrett K. , and Chen W. , 2010: Global coverage of total precipitable water using a microwave variational algorithm. IEEE Trans. Geosci. Remote Sens., 48, 36083621, doi:10.1109/TGRS.2010.2048035.

    • Search Google Scholar
    • Export Citation
  • Cadeddu, M. P., Liljegren J. C. , and Turner D. D. , 2013: The Atmospheric Radiation Measurement (ARM) program network of microwave radiometers: Instrumentation, data, and retrievals. Atmos. Meas. Tech., 6, 23592372, doi:10.5194/amt-6-2359-2013.

    • Search Google Scholar
    • Export Citation
  • Cady-Pereira, K. E., Shephard M. W. , Turner D. D. , Mlawer E. J. , Clough S. A. , and Wagner T. J. , 2008: Improved daytime column-integrated precipitable water vapor from Vaisala radiosonde humidity sensors. J. Atmos. Oceanic Technol., 25, 873883, doi:10.1175/2007JTECHA1027.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2010: Quality controlled upper-air sounding dataset for TiMREX/SoWMEX: Development and corrections. J. Atmos. Oceanic Technol., 27, 18021821, doi:10.1175/2010JTECHA1481.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., Haertel P. T. , Johnson R. H. , Wang J. , and Loehrer S. M. , 2012: Developing high-quality field program sounding datasets. Bull. Amer. Meteor. Soc., 93, 325336, doi:10.1175/BAMS-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Fujita, M., Kimura F. , Yoneyama K. , and Yoshizaki M. , 2008: Verification of precipitable water vapor estimated from shipborne GPS measurements. Geophys. Res. Lett., 35, L13803, doi:10.1029/2008GL033764.

    • Search Google Scholar
    • Export Citation
  • Immler, F. J., and Sommer M. , 2011: Brief description of the RS92 GRUAN data product (RS92-GDP). GRUAN Tech. Doc. GRUAN-TD-4, 17 pp. [Available online at http://www.dwd.de/bvbw/generator/DWDWWW/Content/Projekte/Gruan/Downloads/documents/gruan-td-4,templateId=raw,property=publicationFile.pdf/gruan--4.pdf.]

  • Immler, F. J., Dykema J. , Gardiner T. , Whiteman D. N. , Thorne P. W. , and Vömel H. , 2010: A guide for upper-air reference measurements: Guidance for developing GRUAN data products. Atmos. Meas. Tech. Discuss., 3, 12171231, doi:10.5194/amt-3-1217-2010.

    • Search Google Scholar
    • Export Citation
  • International and Scientific Management Group of GATE, 1974: GATE final international scientific plans. Bull. Amer. Meteor. Soc., 55, 711744, doi:10.1175/1520-0477(1974)055<0711:G>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and Ciesielski P. E. , 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and Jones A. S. , 2007: A blended satellite total precipitable water product for operational forecasting. J. Atmos. Oceanic Technol., 24, 7481, doi:10.1175/JTECH1960.1.

    • Search Google Scholar
    • Export Citation
  • Liou, Y., Teng Y. , Hove T. V. , and Liljegren J. C. , 2001: Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteor., 40, 515, doi:10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loehrer, S. M., Edmands T. A. , and Moore J. A. , 1996: TOGA COARE upper-air sounding data archive: Development and quality control procedures. Bull. Amer. Meteor. Soc., 77, 26512671, doi:10.1175/1520-0477(1996)077<2651:TCUASD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and Holdridge D. J. , 2012: Investigations of possible low-level temperature and moisture anomalies during the AMIE field campaign on Manus Island. U.S. Department of Energy Tech. Rep. DOE-SC/ARM-TR-119. [Available online at www.arm.gov/publications/tech_reports/doe-sc-arm-tr-119.pdf.]

  • Miloshevich, L. M., Vömel H. , Whitman D. N. , and Leblanc T. , 2009: Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res., 114, D11305, doi:10.1029/2008JD011565.

    • Search Google Scholar
    • Export Citation
  • Nash, J., Oakley T. , Vömel H. , and Li W. , 2011: WMO intercomparisons of high quality radiosonde systems. Instruments and Observing Methods Rep. 107, WMO Tech. Doc. WMO/TD-1580, 238 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-107_Yangjiang/IOM-107_Yangjiang.zip.]

  • Nuret, M., Lafore J.-P. , Guichard F. , Redelsperger J.-L. , Bock O. , Agusti-Panareda A. , and N’Gamini J.-B. , 2008: Correction of humidity bias for Vaisala RS80-A sondes during the AMMA 2006 observing period. J. Atmos. Oceanic Technol., 25, 21522158, doi:10.1175/2008JTECHA1103.1.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., Ware R. H. , Van Hove T. , Solheim F. , Alber C. , and Johnson J. , 1993: Sensing atmospheric water vapor with the global positioning system. Geophys. Res. Lett., 20, 26312634, doi:10.1029/93GL02935.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., Johnson J. M. , Van Hove T. M. , and Iwabuchi T. , 2005: Atmospheric water vapor and geoid measurements in the open ocean with GPS. Geophys. Res. Lett., 32, doi:10.1029/2005GL022573.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and Coauthors, 2009: Reference upper-air observations for climate: Rationale, progress, and plans. Bull. Amer. Meteor. Soc., 90, 361369, doi:10.1175/2008BAMS2540.1.

    • Search Google Scholar
    • Export Citation
  • Steigenberger, P., Rothacher M. , Dietrich R. , Fritsche M. , Rülke A. , and Vey S. , 2006: Reprocessing of a global GPS network. J. Geophys. Res., 111, B05402, doi:10.1029/2005JB003747.

    • Search Google Scholar
    • Export Citation
  • Sugidachi, T., and Fujiwara M. , 2013: Correction of the stepwise change observed at 0°C in Meisei RS2-91, RS-01G, and RS-06G radiosonde relative humidity profiles. J. Meteor. Soc. Japan, 91, 323336, doi:10.2151/jmsj.2013-306.

    • Search Google Scholar
    • Export Citation
  • Thomas, I. D., King M. A. , Clarke P. J. , and Penna N. T. , 2011: Precipitable water vapor estimates from homogeneously reprocessed GPS data: An intertechnique comparison in Antarctica. J. Geophys. Res., 116, D04107, doi:10.1029/2010JD013889.

    • Search Google Scholar
    • Export Citation
  • Tregoning, P., Boers R. , O’Brien D. , and Hendy M. , 1998: Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res., 103, 28 70128 710, doi:10.1029/98JD02516.

    • Search Google Scholar
    • Export Citation
  • Vaisala, cited 2011: Sounding data continuity. [Available online at http://www.vaisala.com/en/products/soundingsystemsandradiosondes/soundingdatacontinuity/Pages/default.aspx.]

  • Vömel, H., and Coauthors, 2007: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953963, doi:10.1175/JTECH2019.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Zhang L. , 2008: Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J. Climate, 21, 22182238, doi:10.1175/2007JCLI1944.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Cole H. L. , Carlson D. J. , Miller E. R. , Beierle K. , Paukkunen A. , and Laine T. K. , 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19, 9811002, doi:10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Zhang L. , Dai A. , Van Hove T. , and Van Baelen J. , 2007: A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res., 112, D11107, doi:10.1029/2006JD007529.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Zhang L. , Dai A. , Immler F. , Sommer M. , and Vömel H. , 2013: Radiation dry bias correction of Vaisala RS92 humidity data and its impact on historical radiosonde data. J. Atmos. Oceanic Technol., 30, 197214, doi:10.1175/JTECH-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Ware, R. H., and Coauthors, 2000: SuomiNet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc., 81, 677694, doi:10.1175/1520-0477(2000)081<0677:SARNGN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Lukas R. , 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well calibrated ocean algorithm for Special Sensor Microwave Imager. J. Geophys. Res., 102, 87038718, doi:10.1029/96JC01751.

    • Search Google Scholar
    • Export Citation
  • Wu, X., Moncrieff M. W. , and Emmanuel K. A. , 2000: Evaluation of large-scale forcing during TOGA COARE for cloud-resolving models and single-column models. J. Atmos. Sci., 57, 29772985, doi:10.1175/1520-0469(2000)057<2977:EOLSFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamanaka, M. D., and Coauthors, 2008: HARIMAU radar-profiling network over the Indonesian Maritime Continent: A GEOSS early achievement for hydrological cycle and disaster prevention. J. Disaster Res., 3, 7888.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., Esbensen S. , and Chu J. H. , 1973: Determination of bulk properties of tropical cloud clusters for large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and Parsons D. B. , 1999: A proposed mechanism for the intrusion of dry air into the tropical west Pacific region. J. Atmos. Sci., 56, 15241546, doi:10.1175/1520-0469(1999)056<1524:APMFTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., Hanyu M. , Yoshiura F. , Sueyoshi S. , and Katsumata M. , 2002: Radiosonde observation from the ship in the tropical region. Report of Japan Marine Science and Technology Center, Rep. 45, 31–39. [Available online at http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/shiken45_04.pdf.]

  • Yoneyama, K., Zhang C. , and Long C. N. , 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 1871–1891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Young, K., Wang J. , Brown W. , and Lauritsen D. , 2013: Dynamics of the Madden–Julian Oscillation (DYNAMO) 2011 quality controlled radiosonde dataset from RV Revelle. Version 1.2, NCAR, 14 pp. [Available online at http://data.eol.ucar.edu/datafile/nph-get/347.099/readme.DYNAMO-2011.GAUS-Revelle-3rdRelease.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 32
PDF Downloads 10 10 10

Quality-Controlled Upper-Air Sounding Dataset for DYNAMO/CINDY/AMIE: Development and Corrections

View More View Less
  • 1 * Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Japanese Agency for Marine-Earth Science and Technology, Yokosuka, Japan
  • | 3 Pacific Northwest National Laboratory, Richland, Washington
  • | 4 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York, and National Center for Atmospheric Research, Boulder, Colorado
  • | 5 National Center for Atmospheric Research, Boulder, Colorado
  • | 6 ** University Corporation for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

The upper-air sounding network for Dynamics of the Madden–Julian Oscillation (DYNAMO) has provided an unprecedented set of observations for studying the MJO over the Indian Ocean, where coupling of this oscillation with deep convection first occurs. With 72 rawinsonde sites and dropsonde data from 13 aircraft missions, the sounding network covers the tropics from eastern Africa to the western Pacific. In total nearly 26 000 soundings were collected from this network during the experiment’s 6-month extended observing period (from October 2011 to March 2012). Slightly more than half of the soundings, collected from 33 sites, are at high vertical resolution. Rigorous post–field phase processing of the sonde data included several levels of quality checks and a variety of corrections that address a number of issues (e.g., daytime dry bias, baseline surface data errors, ship deck heating effects, and artificial dry spikes in slow-ascent soundings).

Because of the importance of an accurate description of the moisture field in meeting the scientific goals of the experiment, particular attention is given to humidity correction and its validation. The humidity corrections, though small relative to some previous field campaigns, produced high-fidelity moisture analyses in which sonde precipitable water compared well with independent estimates. An assessment of operational model moisture analyses using corrected sonde data shows an overall good agreement with the exception at upper levels, where model moisture and clouds are more abundant than the sonde data would indicate.

Corresponding author address: Paul E. Ciesielski, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: paulc@atmos.colostate.edu

Abstract

The upper-air sounding network for Dynamics of the Madden–Julian Oscillation (DYNAMO) has provided an unprecedented set of observations for studying the MJO over the Indian Ocean, where coupling of this oscillation with deep convection first occurs. With 72 rawinsonde sites and dropsonde data from 13 aircraft missions, the sounding network covers the tropics from eastern Africa to the western Pacific. In total nearly 26 000 soundings were collected from this network during the experiment’s 6-month extended observing period (from October 2011 to March 2012). Slightly more than half of the soundings, collected from 33 sites, are at high vertical resolution. Rigorous post–field phase processing of the sonde data included several levels of quality checks and a variety of corrections that address a number of issues (e.g., daytime dry bias, baseline surface data errors, ship deck heating effects, and artificial dry spikes in slow-ascent soundings).

Because of the importance of an accurate description of the moisture field in meeting the scientific goals of the experiment, particular attention is given to humidity correction and its validation. The humidity corrections, though small relative to some previous field campaigns, produced high-fidelity moisture analyses in which sonde precipitable water compared well with independent estimates. An assessment of operational model moisture analyses using corrected sonde data shows an overall good agreement with the exception at upper levels, where model moisture and clouds are more abundant than the sonde data would indicate.

Corresponding author address: Paul E. Ciesielski, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: paulc@atmos.colostate.edu
Save