• Afzalimhr, H., Dey S. , and Rasoulianfar P. , 2007: Influence of decelerating flow on incipient motion of a gravel-bed stream. Sadhana,32, 545559, doi:10.1007/s12046-007-0041-7.

    • Search Google Scholar
    • Export Citation
  • Calantoni, J., and Puleo J. A. , 2006: Role of pressure gradients in sheet flow of coarse sediments under sawtooth waves. J. Geophys. Res., 111, C01010, doi:10.1029/2005JC002875.

    • Search Google Scholar
    • Export Citation
  • Davies, A. G., Soulsby R. L. , and King H. L. , 1988: A numerical model of the combined wave and current bottom boundary layer. J. Geophys. Res., 93, 491508, doi:10.1029/JC093iC01p00491.

    • Search Google Scholar
    • Export Citation
  • Earnshaw, H. C., 1996: A study of flow over a rippled bed using particle image velocimetry. Ph.D. thesis, University of Edinburgh.

  • Foster, D. L., Beach R. A. , and Holman R. A. , 2000: Field observations of the wave bottom boundary layer. J. Geophys. Res., 105, 19 631–19 647, doi:10.1029/1999JC900018.

    • Search Google Scholar
    • Export Citation
  • Foster, D. L., Bowen A. J. , Holman R. A. , and Natoo P. , 2006: Field evidence of pressure gradient induced incipient motion. J. Geophys. Res.,111, C05004, doi:10.1029/2004JC002863.

  • Grant, W. D., and Madsen O. S. , 1979: Combined wave and current interaction with a rough bottom. J. Geophys. Res.,84, 1797–1808, doi:10.1029/JC084iC04p01797.

  • Hanes, D. M., Alymov V. , and Chang Y. S. , 2001: Wave-formed sand ripples at Duck, North Carolina. J. Geophys. Res., 106, 22 57522 592, doi:10.1029/2000JC000337.

    • Search Google Scholar
    • Export Citation
  • Huntley, D., and Hazen D. , 1988: Seabed stresses in combined wave and steady flow conditions on the Nova Scotia continental shelf: Field measurements and predictions. J. Phys. Oceanogr., 18, 347362, doi:10.1175/1520-0485(1988)018<0347:SSICWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Julien, P. Y., 1995: Erosion and Sedimentation. 1st ed., Cambridge University Press, 280 pp.

  • Kamphuis, J. W., 1975: Friction factor under oscillatory waves. J. Waterw. Port Coastal Ocean Div.,101, 135144.

  • Kao, Y.-M., 2012: EcoSTS: A compact and contactless motion measurement system for coastal sediments tracking. M.S. thesis, Dept. of Computer Science, National Tsing Hua University, 66 pp.

  • Madsen, O., and Wikramanayake P. , 1991: Simple models for turbulent wave-current bottom boundary layer flow. Tech. Rep. DRP-91-1, U.S. Army Corps of Engineers, Coastal Engineering Research Center, 150 pp.

  • Miller, R. L., and Byrne R. J. , 1966: The angle of repose for a single grain on a fixed rough bed. Sedimentology, 6, 303314, doi:10.1111/j.1365-3091.1966.tb01897.x.

    • Search Google Scholar
    • Export Citation
  • Nichols, C. S., and Foster D. L. , 2007: Full-scale observations of wave-induced vortex generation over a rippled bed. J. Geophys. Res., 112, C10015, doi:10.1029/2006JC003841.

    • Search Google Scholar
    • Export Citation
  • Rankin, K. L., and Hires R. I. , 2000: Laboratory measurement of bottom shear stress on a movable bed. J. Geophys. Res., 105, 17 01117 019, doi:10.1029/2000JC900059.

    • Search Google Scholar
    • Export Citation
  • Ribberink, J. S., 1998: Bed-load transport for steady flows and unsteady oscillatory flows. Coastal Eng., 34, 5982, doi:10.1016/S0378-3839(98)00013-1.

    • Search Google Scholar
    • Export Citation
  • Schmeeckle, M. W., Nelson J. M. , and Shreve R. L. , 2007: Forces on stationary particles in near-bed turbulent flows. J. Geophys. Res.,112, F02003, doi:10.1029/2006JF000536.

  • Sherwood, C. R., Lacy J. R. , and Voulgaris G. , 2006: Shear velocity estimates on the inner shelf off Grays Harbor, Washington, USA. Cont. Shelf Res., 26, 19952018, doi:10.1016/j.csr.2006.07.025.

    • Search Google Scholar
    • Export Citation
  • Shields, A., 1936: Anwendung der Anhlichkeitsmechanik und Turbulenzforschung auf die Geschiebebewegung. Mitt. Preuss. Versuchsanst. Wassebau Schiffbau,26, 20 pp.

  • Sleath, J. F. A., 1999: Conditions for plug formation in oscillatory flow. Cont. Shelf Res.,19, 1643–1664, doi:10.1016/S0278-4343(98)00096-X.

  • Smyth, C., and Hay A. , 2002: Wave friction factors in nearshore sands. J. Phys. Oceanogr., 32, 34903498, doi:10.1175/1520-0485(2002)032<3490:WFFINS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soulsby, R. L., and Clarke S. , 2005: Bed shear-stresses under combined waves and currents on smooth and rough beds. HR Wallingford Rep. TR 137, 52 pp. [Available online at tr137_report_richard_repro_smo.pdf.]

  • Styles, R., and Glenn S. M. , 2000: Modeling stratified wave and current bottom boundary layers on the continental shelf. J. Geophys. Res., 105, 24 11924 139, doi:10.1029/2000JC900115.

    • Search Google Scholar
    • Export Citation
  • Swart, D. H., 1974: Offshore sediment transport and equilibrium beach profiles. Delft Hydraulics Laboratory Publ. 131, Delft Hydraulics Laboratory Rep. M918, Part 2, 323 pp.

  • Terrile, E., Reniers A. J. H. M. , Stive M. J. F. , Tromp M. , and Jan Verhagen H. , 2006: Incipient motion of coarse particles under regular shoaling waves. Coastal Eng., 53, 8192, doi:10.1016/j.coastaleng.2005.08.004.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J. H., and Agrawal Y. C. , 1995: Glimpses of a wave boundary layer. J. Geophys. Res., 100, 20 72920 743, doi:10.1029/95JC02131.

    • Search Google Scholar
    • Export Citation
  • Tsai, Y.-L., Tu T.-T. , Bae H. , and Chou P. H. , 2010: EcoIMU: A dual triaxial-accelerometer inertial measurement unit for wearable applications. Proc. 2010 Int. Conf. on Body Sensor Networks, Singapore, IEEE, 207–212, doi:10.1109/BSN.2010.47.

  • Van Burkalow, A., 1945: Angle of repose and angle of sliding friction: An experimental study. Geol. Soc. Amer. Bull.,56, 669–707, doi:10.1130/0016-7606(1945)56[669:AORAAO]2.0.CO;2.

  • Zala Flores, N., and Sleath J. F. A. , 1998: Mobile layer in oscillatory sheet flow. J. Geophys. Res., 103, 12 78312 793, doi:10.1029/98JC00691.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 3 3 3

Development and Evaluation of an Autonomous Sensor for the Observation of Sediment Motion

View More View Less
  • 1 University of New Hampshire, Durham, New Hampshire
  • | 2 University of California, Irvine, Irvine, California
  • | 3 National Tsing Hua University, Hsinchu City, Taiwan
  • | 4 National Research Council Postdoctoral Fellow, Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 5 Marine Geosciences Division, Naval Research Laboratory, Stennis Space Center, Mississippi
Restricted access

Abstract

Measurements within the mobile bed layer have been limited by previous Eulerian-based technologies. A microelectromechanical system device, called a smart sediment grain (SSG), that can measure and record Lagrangian observations of coastal sediments at incipient motion has been developed. These sensors have the potential to resolve fundamental hypotheses regarding the incipient motion of coastal sediments. Angle of repose experiments verified that the sensor enclosure has mobility characteristics similar to coarse gravel. Experiments conducted in a small oscillating flow tunnel verified that the sensors detect incipient motion under various hydrodynamic conditions. Evidence suggests the influence of pressure-gradient-induced sediment motion, contrary to the more commonly assumed bed shear stress criterion. Lagrangian measurements of rotation measured with the newly developed SSG agreed to within 5% of the rotation estimates made simultaneously with high-speed video cameras.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-13-00180.s1.

Corresponding author address: Donya Frank, Center for Ocean Engineering, University of New Hampshire, 24 Colovos Rd., Durham, NH 03824. E-mail: donya.frank@unh.edu

Abstract

Measurements within the mobile bed layer have been limited by previous Eulerian-based technologies. A microelectromechanical system device, called a smart sediment grain (SSG), that can measure and record Lagrangian observations of coastal sediments at incipient motion has been developed. These sensors have the potential to resolve fundamental hypotheses regarding the incipient motion of coastal sediments. Angle of repose experiments verified that the sensor enclosure has mobility characteristics similar to coarse gravel. Experiments conducted in a small oscillating flow tunnel verified that the sensors detect incipient motion under various hydrodynamic conditions. Evidence suggests the influence of pressure-gradient-induced sediment motion, contrary to the more commonly assumed bed shear stress criterion. Lagrangian measurements of rotation measured with the newly developed SSG agreed to within 5% of the rotation estimates made simultaneously with high-speed video cameras.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-13-00180.s1.

Corresponding author address: Donya Frank, Center for Ocean Engineering, University of New Hampshire, 24 Colovos Rd., Durham, NH 03824. E-mail: donya.frank@unh.edu
Save