• Aginova Inc., cited 2013: Sentinel Micro with probe: Wi-Fi temperature sensor. [Available online at http://www.aginova.com/wifi_sensor_sentinel_micro_with_probe.php.]

  • Anderson, S. P., and Baumgartner M. F. , 1998: Radiative heating errors in naturally ventilated air temperature measurements made from buoys. J. Atmos. Oceanic Technol., 15, 157173, doi:10.1175/1520-0426(1998)015<0157:RHEINV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beckwith, R., Teibel D. , and Bowen P. , 2004: Report from the field: Results from an agricultural wireless sensor network. Proceedings of the 29th Conference on Local Computer Networks, IEEE, 471478, doi:10.1109/LCN.2004.105.

  • Chen, F., and Coauthors, 2012: Research priorities in observing and modeling urban weather and climate. Bull. Amer. Meteor. Soc., 93, 1725–1728, 10.1175/BA MS-D-11-00217.1.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 2013: Observing London: Weather data needed for London to thrive. London Climate Change Partnership, 81 pp. [Available online at http://climatelondon.org.uk/wp-content/uploads/2013/07/Observing-London-Final.pdf.]

  • Harrison, R. G., 2010: Natural ventilation effects on temperatures within Stevenson screens. Quart. J. Roy. Meteor. Soc., 136, 253259, doi:10.1002/qj.537.

    • Search Google Scholar
    • Export Citation
  • Hastie, T., and Tibshirani R. , 1990: Exploring the nature of covariate effects in the proportional hazards model. Biometrics, 46, 10051016, doi:10.2307/2532444.

    • Search Google Scholar
    • Export Citation
  • Hubbard, K. G., Lin X. , and Walter-Shea E. A. , 2001: The effectiveness of the ASOS, MMTS, Gill, and CRS air temperature radiation shields. J. Atmos. Oceanic Technol., 18, 851864, doi:10.1175/1520-0426(2001)018<0851:TEOTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbart, J., Link T. , Campbell C. , and Cobos D. , 2005: Evaluation of a low-cost temperature measurement system for environmental applications. Hydrol. Processes, 19, 15171523, doi:10.1002/hyp.5861.

    • Search Google Scholar
    • Export Citation
  • Kurzeja, R., 2010: Accurate temperature measurement in a naturally-aspirated radiation shield. Bound.-Layer Meteor., 134, 181193, doi:10.1007/s10546-009-9430-2.

    • Search Google Scholar
    • Export Citation
  • Matese, A., Di Gennaro S. F. , Zaldei A. , Genesio L. , and Vaccari F. P. , 2009: A wireless sensor network for precision viticulture: The NAV system. Comput. Electron. Agric., 69, 5158, doi:10.1016/j.compag.2009.06.016.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., Desjardins R. L. , Gao Z. , and van Haarlem R. , 2008: Errors of naturally ventilated air temperature measurements in a spatial observation network. J. Atmos. Oceanic Technol., 25, 21452151, doi:10.1175/2008JTECHA1046.1.

    • Search Google Scholar
    • Export Citation
  • Maxim Integrated, cited 2014: DS1921G: Thermochron iButton device. [Available online at http://www.maximintegrated.com/datasheet/index.mvp/id/4023.]

  • McGee, T. D., 1988: Principles and Methods of Temperature measurement. John Wiley & Sons, 581 pp.

  • Met Office, cited 2013: Met Office Integrated Data Archive System (MIDAS) land and marine surface stations data (1853-current). NCAS British Atmospheric Data Centre. [Available online at http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_ukmo-midas.]

  • Muller, C. L., Chapman L. , Grimmond C. S. B. , Young D. T. , and Cai X.-M. , 2013a: Sensors and the city: A review of urban meteorological networks. Int. J. Climatol., 33, 15851600, doi:10.1002/joc.3678.

    • Search Google Scholar
    • Export Citation
  • Muller, C. L., Chapman L. , Grimmond C. S. B. , Young D. T. , and Cai X.-M. , 2013b: Birmingham urban climate laboratory (BUCL): Experiences, challenges and applications of an urban temperature network. Geophys. Res. Abstr., 15, 3325.

    • Search Google Scholar
    • Export Citation
  • Muller, C. L., Chapman L. , Grimmond C. S. B. , Young D. T. , and Cai X.-M. , 2013c: Toward a standardized metadata protocol for urban meteorological networks. Bull. Amer. Meteor. Soc., 94, 11611185, doi:10.1175/BAMS-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, R., and Mahrt L. , 2005: Air temperature measurement errors in naturally ventilated radiation shields. J. Atmos. Oceanic Technol., 22, 10461058, doi:10.1175/JTECH1762.1.

    • Search Google Scholar
    • Export Citation
  • Onset Computer Corporation, cited 2014: HOBO U23 Pro V2 external temperature data logger—U23-004. [Available online at http://www.onsetcomp.com/products/data-loggers/u23-004.]

  • Overeem, A., Robinson J. C. R. , Leijnse H. , Steeneveld G. J. , Horn B. K. P. , and Uijlenhoet R. , 2013: Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett., 40, 40814085, doi:10.1002/grl.50786.

    • Search Google Scholar
    • Export Citation
  • Perry, M. C., Prior M. J. , and Parker D. E. , 2007: An assessment of the suitability of a plastic thermometer screen for climatic data collection. Int. J. Climatol., 27, 267276, doi:10.1002/joc.1381.

    • Search Google Scholar
    • Export Citation
  • Richardson, S. J., Brock F. V. , Semmer S. R. , and Jirak C. , 1999: Minimizing errors associated with multiplate radiation shields. J. Atmos. Oceanic Technol., 16, 18621872, doi:10.1175/1520-0426(1999)016<1862:MEAWMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and Oke T. R. , 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, doi:10.1175/BAMS-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, C. K., and Smoot A. R. , 2013: An effective, economic, aspirated radiation shield for air temperature observations and its spatial gradients. J. Atmos. Oceanic Technol., 30, 526537, doi:10.1175/JTECH-D-12-00044.1.

    • Search Google Scholar
    • Export Citation
  • Tomlinson, C. J., Chapman L. , Thornes T. E. , and Baker C. J. , 2012: Derivation of Birmingham’s summer surface urban heat island from MODIS satellite images. Int. J. Climatol., 32, 214224, doi:10.1002/joc.2261.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., Hubbe J. M. , and Shaw W. J. , 2000: Evaluation of an inexpensive temperature datalogger for meteorological applications. J. Atmos. Oceanic Technol., 17, 7781, doi:10.1175/1520-0426(2000)017<0077:EOAITD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, S. N., 2004: Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Amer. Stat. Assoc., 99, 673686, doi:10.1198/016214504000000980.

    • Search Google Scholar
    • Export Citation
  • Wood, S. N., 2013: Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. Comprehensive R Archive Network, 219 pp. [Available from http://cran.at.r-project.org/web/packages/mgcv/mgcv.pdf.]

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2008: Guide to meteorological instruments and methods of observation. 7th ed. WMO Rep. WMO-8, 681 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 12 12 12

A Low-Cost Wireless Temperature Sensor: Evaluation for Use in Environmental Monitoring Applications

View More View Less
  • 1 School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
  • | 2 Department of Meteorology, University of Reading, Reading, United Kingdom
Restricted access

Abstract

A wide range of environmental applications would benefit from a dense network of air temperature observations. However, with limitations of costs, existing siting guidelines, and risk of damage, new methods are required to gain a high-resolution understanding of spatiotemporal patterns of temperature for agricultural and urban meteorological phenomena such as the urban heat island. With the launch of a new generation of low-cost sensors, it is possible to deploy a network to monitor air temperature at finer spatial resolutions. This study investigates the Aginova Sentinel Micro (ASM) sensor with a custom radiation shield (together less than USD$150) that can provide secure near-real-time air temperature data to a server utilizing existing (or user deployed) Wi-Fi networks. This makes it ideally suited for deployment where wireless communications readily exist, notably urban areas. Assessment of the performance of the ASM relative to traceable standards in a water bath and atmospheric chamber show it to have good measurement accuracy with mean errors <±0.22°C between −25° and 30°C, with a time constant in ambient air of 110 ±15 s. Subsequent field tests also showed the ASM (in the custom shield) had excellent performance (RMSE = 0.13°C) over a range of meteorological conditions relative to a traceable operational Met Office platinum resistance thermometer. These results indicate that the ASM and radiation shield are more than fit for purpose for dense network deployment in environmental monitoring applications at relatively low cost compared to existing observation techniques.

Corresponding author address: Lee Chapman, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. E-mail: l.chapman@bham.ac.uk

Abstract

A wide range of environmental applications would benefit from a dense network of air temperature observations. However, with limitations of costs, existing siting guidelines, and risk of damage, new methods are required to gain a high-resolution understanding of spatiotemporal patterns of temperature for agricultural and urban meteorological phenomena such as the urban heat island. With the launch of a new generation of low-cost sensors, it is possible to deploy a network to monitor air temperature at finer spatial resolutions. This study investigates the Aginova Sentinel Micro (ASM) sensor with a custom radiation shield (together less than USD$150) that can provide secure near-real-time air temperature data to a server utilizing existing (or user deployed) Wi-Fi networks. This makes it ideally suited for deployment where wireless communications readily exist, notably urban areas. Assessment of the performance of the ASM relative to traceable standards in a water bath and atmospheric chamber show it to have good measurement accuracy with mean errors <±0.22°C between −25° and 30°C, with a time constant in ambient air of 110 ±15 s. Subsequent field tests also showed the ASM (in the custom shield) had excellent performance (RMSE = 0.13°C) over a range of meteorological conditions relative to a traceable operational Met Office platinum resistance thermometer. These results indicate that the ASM and radiation shield are more than fit for purpose for dense network deployment in environmental monitoring applications at relatively low cost compared to existing observation techniques.

Corresponding author address: Lee Chapman, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. E-mail: l.chapman@bham.ac.uk
Save