• Anctil, F., Donelan M. A. , Drennan W. M. , and Graber H. C. , 1994: Eddy-correlation measurements of air–sea fluxes from a discus buoy. J. Atmos. Oceanic Technol., 11, 11441150, doi:10.1175/1520-0426(1994)011<1144:ECMOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Hunt J. C. R. , 1993: Turbulent shear flow over slowly moving waves. J. Fluid Mech., 251, 109148, doi:10.1017/S0022112093003350.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., Kent E. C. , and Taylor P. K. , 2004: An analytical model of heating errors in marine air temperatures from ships. J. Atmos. Oceanic Technol., 21, 11981215, doi:10.1175/1520-0426(2004)021<1198:AAMOHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bourras, D., and Coauthors, 2009: Turbulent air-sea fluxes in the Gulf of Guinea during the AMMA experiment. J. Geophys. Res., 114, C04014, doi:10.1029/2008JC004951.

    • Search Google Scholar
    • Export Citation
  • Brut, A., Butet A. , Durand P. , Caniaux G. , and Planton S. , 2005: Air-sea exchanges in the equatorial area from the EQUALANT99 dataset: Bulk parameterizations of turbulent fluxes corrected for airflow distortion. Quart. J. Roy. Meteor. Soc., 131, 24972538, doi:10.1256/qj.03.185.

    • Search Google Scholar
    • Export Citation
  • Christensen, K. H., Röhrs J. , Ward B. , Fer I. , Broström G. , Saetra O. , and Breivik O. , 2013: Surface wave measurements using a ship-mounted ultrasonic altimeter. Methods Oceanogr.,6, 1–15, doi:10.1016/j.mio.2013.07.002.

  • Cohen, J. E., and Belcher S. E. , 1999: Turbulent shear flow over fast-moving waves. J. Fluid Mech.,386,345371, doi:10.1017/S0022112099004383.

  • Donelan, M. A., Dobson F. W. , Smith S. D. , and Anderson R. J. , 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23, 21432149, doi:10.1175/1520-0485(1993)023<2143:OTDOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., Drennan W. M. , and Katsaros K. B. , 1997: The air–sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr., 27, 20872099, doi:10.1175/1520-0485(1997)027<2087:TASMFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., Babanin A. V. , Young I. R. , Banner M. L. , and McCormick C. , 2005: Wave-follower field measurements of the wind-input spectral function. Part I: Measurements and calibrations. J. Atmos. Oceanic Technol., 22, 799813, doi:10.1175/JTECH1725.1.

    • Search Google Scholar
    • Export Citation
  • Dupuis, H., Taylor P. K. , Weill A. , and Katsaros K. , 1997: Inertial dissipation method applied to derive turbulent fluxes over the ocean during the Surface of the Ocean, Fluxes and Interactions with the Atmosphere/Atlantic Stratocumulus Transition Experiment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments with low to moderate wind speeds. J. Geophys. Res., 102, 21 11521 129, doi:10.1029/97JC00446.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., Fairall C. W. , Mestayer P. G. , and Larsen S. E. , 1991: A study of the inertial-dissipation method for computing air-sea fluxes. J. Geophys. Res.,96, 10 689–10 711, doi:10.1029/91JC00886.

  • Edson, J. B., Hinton A. A. , Prada K. E. , Hare J. E. , and Fairall C. W. , 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562, doi:10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356, doi:10.1175/BAMS-88-3-341.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Hare J. E. , Grachev A. A. , and Edson J. B. , 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Graber, H. C., Terray E. A. , Donelan M. A. , Drennan W. M. , Van Leer J. C. , and Peters D. B. , 2000: ASIS—A new Air–Sea Interaction Spar buoy: Design and performance at sea. J. Atmos. Oceanic Technol., 17, 708720, doi:10.1175/1520-0426(2000)017<0708:AANASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., Fairall C. W. , Hare J. E. , and Edson J. B. , 2001: Wind stress over sea waves. Preprints, 11th Conf. on Interaction of the Sea and Atmosphere, San Diego, CA, Amer. Meteor. Soc., 1.4. [Available online at https://ams.confex.com/ams/Polar-AirSe/webprogram/Paper20171.html.]

  • Grachev, A. A., Andreas E. L. , Fairall C. W. , Guest P. S. , and Persson P. O. G. , 2012: The critical Richardson number and limit of applicability of Monin-Obukhov similarity theory in the stable atmospheric boundary layer. Preprints, 20th Symp. on Boundary Layers and Turbulence, Boston, MA, Amer. Meteor. Soc., 3B.5. [Available online at https://ams.confex.com/ams/20BLT18AirSea/webprogram/Paper209287.html.]

  • Grare, L., Peirson W. L. , Branger H. , Walker J. W. , Giovanangeli J.-P. , and Makin V. , 2013: Growth and dissipation of wind-forced deep-water waves. J. Fluid Mech., 722, 550, doi:10.1017/jfm.2013.88.

    • Search Google Scholar
    • Export Citation
  • Howden, S., Gilhousen D. , Guinasso N. , Walpert J. , Sturgeon M. , Bender L. , 2008: Hurricane Katrina winds measured by a buoy‐mounted sonic anemometer. J. Atmos. Oceanic Technol.,25, 607–616, doi:10.1175/2007JTECHO518.1.

  • Kaimal, J. C., Wyngaard J. C. , Izumi Y. , and Coté O. R. , 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589, doi:10.1002/qj.49709841707.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., 1980: The aqueous thermal boundary layer. Bound.-Layer Meteor., 18, 107127, doi:10.1007/BF00117914.

  • Katsaros, K. B., Donelan M. A. , and Drennan W. M. , 1993: Flux measurements from a SWATH ship in SWADE. J. Mar. Syst., 4, 117132, doi:10.1016/0924-7963(93)90003-5.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Izv. Acad. Sci. USSR,30, 299303.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., Makin V. K. , and Meirink J. F. , 2001: Simplified model of the air flow above waves. Bound.-Layer Meteor., 100, 6390, doi:10.1023/A:1018914113697.

    • Search Google Scholar
    • Export Citation
  • Le Boyer, C., Cambon G. , Daniault N. , Herbette S. , Le Cann B. , Marié L. , Morin P. , 2009: Observations of the Ushant tidal front in September 2007. Cont. Shelf Res.,29, 1026–1037, doi:10.1016/j.csr.2008.12.020.

  • Lecornu, F., and De Roeck Y.-H. , 2009: PREVIMER—Coastal observations and forecasts. Houille Blanche,1, 60–63, doi:10.1051/lhb:2009006.

  • Liu, W. T., Katsaros K. B. , and Businger J. A. , 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, doi:10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., Hristov T. S. , Edson J. B. , and Friehe C. A. , 2008: Platform motion effects on measurements of turbulence and air–sea exchange over the open ocean. J. Atmos. Oceanic Technol., 25, 16831694, doi:10.1175/2008JTECHO547.1.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Obukhov A. M. , 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Morisset, S., and Reverdin G. , 2011: Prototype drifter study: “Tag proto” (SMRULOCEAN). LOCEAN-UMPC Internal Rep., 38 pp.

  • Pedreros, R., Dardier G. , Dupuis H. , Graber H. C. , Drennan W. M. , Weill A. , Guérin C. , and Nacass P. , 2003: Momentum and heat fluxes via the eddy correlation method on the R/V L’Atalante and an ASIS buoy. J. Geophys. Res., 108, 3339, doi:10.1029/2002JC001449.

    • Search Google Scholar
    • Export Citation
  • Popinet, S., Smith M. , and Stevens C. , 2004: Experimental and numerical study of the turbulence characteristics of airflow around a research vessel. J. Atmos. Oceanic Technol., 21, 15751589, doi:10.1175/1520-0426(2004)021<1575:EANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., and Coauthors, 2013: Surpact: A SMOS surface drifter for air-sea interaction. Oceanography, 26, 4856, doi:10.5670/oceanog.2013.04.

    • Search Google Scholar
    • Export Citation
  • Sahlée, E., Drennan W. M. , Potter H. , and Rebozo M. A. , 2012: Waves and air-sea fluxes from a drifting ASIS buoy during the Southern Ocean Gas Exchange experiment. J. Geophys. Res., 117, C08003, doi:10.1029/2012JC008032.

    • Search Google Scholar
    • Export Citation
  • Semedo, A., Saetra Ø. , Rutgersson A. , Kahma K. K. , and Pettersson H. , 2009: Wave-induced wind in the marine boundary layer. J. Atmos. Sci., 66, 22562271, doi:10.1175/2009JAS3018.1.

    • Search Google Scholar
    • Export Citation
  • Smedman, A., Högström U. , Sahleé E. , Drennan W. M. , Kahma K. K. , Pettersson H. , and Zhang F. , 2009: Observational study of marine atmospheric boundary layer characteristics during swell. J. Atmos. Sci., 66, 27472763, doi:10.1175/2009JAS2952.1.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, doi:10.1029/JC093iC12p15467.

    • Search Google Scholar
    • Export Citation
  • Soloviev, Y. P., and Kudryavtsev V. N. , 2010: Wind-speed undulations over swell: Field experiment and interpretation. Bound.-Layer Meteor., 136, 341363, doi:10.1007/s10546-010-9506-z.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., Edson J. B. , Hristov T. , and McWilliams J. C. , 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245, doi:10.1175/2007JAS2427.1.

    • Search Google Scholar
    • Export Citation
  • Weill, A., and Coauthors, 2003: Toward a better determination of turbulent air–sea fluxes from several experiments. J. Climate, 16, 600618, doi:10.1175/1520-0442(2003)016<0600:TABDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., Bigorre S. P. , Jonathan J. L. , Ware D. , and Edson J. B. , 2012: A surface mooring for air–sea interaction research in the Gulf Stream. Part I: Mooring design and instrumentation. J. Atmos. Oceanic Technol., 29, 13631376, doi:10.1175/JTECH-D-12-00060.1.

    • Search Google Scholar
    • Export Citation
  • Yelland, M. J., Moat B. I. , Pascal R. W. , and Berry D. I. , 2002: CFD model estimates of the airflow distortion over research ships and the impact on momentum flux measurements. J. Atmos. Oceanic Technol., 19, 14771499, doi:10.1175/1520-0426(2002)019<1477:CMEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 96 0
PDF Downloads 88 50 0

A New Platform for the Determination of Air–Sea Fluxes (OCARINA): Overview and First Results

View More View Less
  • 1 * LATMOS, Guyancourt, France
  • | 2 Aix Marseille Université, CNRS, Marseille, France
  • | 3 LOCEAN, Paris, France
  • | 4 Ifremer, LPO, Plouzané, France
  • | 5 Division Technique, INSU, Meudon, France
Restricted access

Abstract

The present paper describes a new type of floating platform that was specifically designed for estimating air–sea fluxes, investigating turbulence characteristics in the atmospheric surface boundary layer, and studying wind–wave interactions. With its design, it can be deployed in the open ocean or in shallow-water areas. The system is designed to be used from a research vessel. It can operate for ~10 h as a drifting wave rider and 3 h under power. Turbulence and meteorological instrument packages are placed at a low altitude (1–1.5 m). It was deployed for validation purposes during the Front de Marée, Variabilité (FROMVAR), 2011 experiment off the west coast of Brittany, France. Wind friction velocity and surface turbulent buoyancy flux were estimated using eddy covariance, spectral, bulk, and profile methods. The comparisons of the four methods show a reasonable agreement except for the spectral buoyancy flux. This suggests that the platform design is correct. Also, the wind measured at a fixed height above the sea shows spectral coherence with wave heights, such that wind and swell are in phase, with the largest wind values on top of swell crests. This result in qualitative agreement with current model predictions supports the capability of the Ocean Coupled to Atmosphere, Research at the Interface with a Novel Autonomous platform (OCARINA) to investigate wind–swell interactions.

Corresponding author address: Denis Bourras, LATMOS, Quartier des Garennes, 11 Boulevard d’Alembert, 78280 Guyancourt, France. E-mail: denis.bourras@latmos.ipsl.fr

Abstract

The present paper describes a new type of floating platform that was specifically designed for estimating air–sea fluxes, investigating turbulence characteristics in the atmospheric surface boundary layer, and studying wind–wave interactions. With its design, it can be deployed in the open ocean or in shallow-water areas. The system is designed to be used from a research vessel. It can operate for ~10 h as a drifting wave rider and 3 h under power. Turbulence and meteorological instrument packages are placed at a low altitude (1–1.5 m). It was deployed for validation purposes during the Front de Marée, Variabilité (FROMVAR), 2011 experiment off the west coast of Brittany, France. Wind friction velocity and surface turbulent buoyancy flux were estimated using eddy covariance, spectral, bulk, and profile methods. The comparisons of the four methods show a reasonable agreement except for the spectral buoyancy flux. This suggests that the platform design is correct. Also, the wind measured at a fixed height above the sea shows spectral coherence with wave heights, such that wind and swell are in phase, with the largest wind values on top of swell crests. This result in qualitative agreement with current model predictions supports the capability of the Ocean Coupled to Atmosphere, Research at the Interface with a Novel Autonomous platform (OCARINA) to investigate wind–swell interactions.

Corresponding author address: Denis Bourras, LATMOS, Quartier des Garennes, 11 Boulevard d’Alembert, 78280 Guyancourt, France. E-mail: denis.bourras@latmos.ipsl.fr
Save