• Ansmann, A., Riebesell M. , and Weitkamp C. , 1990: Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett., 15, 746748, doi:10.1364/OL.15.000746.

    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., 2003: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20, 10921105, doi:10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., Ackerman T. P. , and Turner D. D. , 2004: Evidence of high ice supersaturation in cirrus clouds using ARM Raman lidar measurements. Geophys. Res. Lett., 31, L11106, doi:10.1029/2004GL019705.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Correia J. Jr., Marsh P. T. , and Kong F. , 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842–862, doi:10.1175/WAF-D-12-00103.1.

    • Search Google Scholar
    • Export Citation
  • Diskin, G. S., Podolske J. R. , Sachse G. W. , and Slate T. A. , 2002: Open-path airborne tunable diode laser hygrometer. Diode Lasers and Applications in Atmospheric Sensing, A. Fried, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 4817), 196, doi:10.1117/12.453736.

  • Eloranta, E. W., 2005: High spectral resolution lidar. Lidar: Range Resolved Optical Remote Sensing of the Atmosphere, K. Weitkamp, Ed., Springer-Verlag, 143–163.

  • Fast, J. D., and Coauthors, 2012: Transport and mixing patterns over central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES). Atmos. Chem. Phys., 12, 17591783, doi:10.5194/acp-12-1759-2012.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., Turner D. D. , Heilman Brasseur L. A. , Feltz W. F. , Dubovik O. , and Tooman T. P. , 2001: Raman lidar measurements of the aerosol extinction-to-backscatter ratio over the Southern Great Plains. J. Geophys. Res., 106, 20 33320 348, doi:10.1029/2000JD000144.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains. J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., Blair F. H. , Bisson S. E. , and Turner D. D. , 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 49794990, doi:10.1364/AO.37.004979.

    • Search Google Scholar
    • Export Citation
  • Hair, J. W., and Coauthors, 2008: Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt., 47, 67346752, doi:10.1364/AO.47.006734.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., Nielsen-Gammon J. W. , and Zhang F. , 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol, 49, 18311844, doi:10.1175/2010JAMC2432.1.

    • Search Google Scholar
    • Export Citation
  • Kiemle, C., Wirth M. , Fix A. , Rahm S. , Corsmeier U. , and Di Girolamo P. , 2011: Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars. Quart. J. Roy. Meteor. Soc., 137, 190203, doi:10.1002/qj.757.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSR, 30, 301304.

    • Search Google Scholar
    • Export Citation
  • Lammert, A., and Bösenberg J. , 2006: Determination of the convective boundary-layer height with laser remote sensing. Bound.-Layer Meteor., 119, 159170, doi:10.1007/s10546-005-9020-x.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., Mann J. , and Kristensen L. , 1994: How long is long enough when measuring fluxes and other turbulent statistics? J. Atmos. Oceanic Technol., 11, 661673, doi:10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., Wulfmeyer V. , and Senff C. , 2000: Measuring second- through fourth-order moments in noisy data. J. Atmos. Oceanic Technol., 17, 13301347, doi:10.1175/1520-0426(2000)017<1330:MSTFOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., Lothon M. , Mayor S. D. , Sullivan P. P. , and Canut G. , 2012: A comparison of higher-order vertical velocity moments in the convective boundary layer from lidar with in situ measurements and large-eddy simulation. Bound.-Layer Meteor., 143, 107123, doi:10.1007/s10546-011-9615-3.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., Lenschow D. H. , and Mayor S. D. , 2006: Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound.-Layer Meteor., 121, 521536, doi:10.1007/s10546-006-9077-1.

    • Search Google Scholar
    • Export Citation
  • Milovac, J., Späth F. , Warrach-Sagi K. , Behrendt A. , and Wulfmeyer V. , 2013: Evaluation of WRF boundary layer parameterization schemes and land surface models by comparing an ensemble of 44 members with scanning water vapor DIAL measurements. Preprints, Int. Symp. on Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation, Bonn, Germany, Transregional Collaborative Research Center 32, S3-112. [Available online at http://tr32meeting.uni-koeln.de/images/abstract/s3/TR32-HOBE-S3-Wednesday-1140-1200_Milovac.pdf.]

  • Newsom, R. K., and Banta R. M. , 2004: Assimilating coherent Doppler lidar measurements into a model of the atmospheric boundary layer. Part I: Algorithm development and sensitivity to measurement error. J. Atmos. Oceanic Technol., 21, 13281345, doi:10.1175/1520-0426(2004)021<1328:ACDLMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., Turner D. D. , Mielke B. , Clayton M. , Ferrare R. , and Sivaraman C. , 2009: The use of simultaneous analog and photon counting detection for Raman lidar. Appl. Opt., 48, 39033914, doi:10.1364/AO.48.003903.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., Turner D. D. , and Goldsmith J. E. M. , 2013: Long-term evaluation of temperature profiles measured by an operational Raman lidar. J. Atmos. Oceanic Technol., 30, 1616–1634, doi:10.1175/JTECH-D-12-00138.1.

    • Search Google Scholar
    • Export Citation
  • Pal, S., Behrendt A. , and Wulfmeyer V. , 2010: Elastic-backscatter lidar based characterization of the convective boundary layer and investigation of related statistics. Ann. Geophys., 28, 825847, doi:10.5194/angeo-28-825-2010.

    • Search Google Scholar
    • Export Citation
  • Pal, S., Haeffelin M. , and Batchvarova E. , 2013: Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements. J. Geophys. Res. Atmos., 118, 9277–9295, doi:10.1002/jgrd.50710.

    • Search Google Scholar
    • Export Citation
  • Scarino, A. J., and Coauthors, 2013: Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES. Atmos. Chem. Phys. Discuss., 13, 13 72113 772, doi:10.5194/acpd-13-13721-2013.

    • Search Google Scholar
    • Export Citation
  • Senff, C., Bösenberg J. , and Peters G. , 1994: Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar-RASS. J. Atmos. Oceanic Technol., 11, 8593, doi:10.1175/1520-0426(1994)011<0085:MOWVFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2005: Statistics of scalar fields in the atmospheric boundary layer based on large-eddy simulations. Part 1: Free convection. Bound.-Layer Meteor., 116, 467486, doi:10.1007/s10546-005-0907-3.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Ferrare R. A. , and Brasseur L. A. , 2001: Average aerosol extinction and water vapor profiles over the Southern Great Plains. Geophys. Res. Lett., 28, 44414444, doi:10.1029/2001GL013691.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Ferrare R. A. , Heilman Brasseur L. A. , Feltz W. F. , and Tooman T. P. , 2002: Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar. J. Atmos. Oceanic Technol., 19, 3750, doi:10.1175/1520-0426(2002)019<0037:AROWVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2007: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc., 88, 177190, doi:10.1175/BAMS-88-2-177.

    • Search Google Scholar
    • Export Citation
  • Vogelmann, A. M., and Coauthors, 2012: RACORO extended-term aircraft observations of boundary layer clouds. Bull. Amer. Meteor. Soc., 93, 861878, doi:10.1175/BAMS-D-11-00189.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., 1999a: Investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar–RASS. J. Atmos. Sci., 56, 10551076, doi:10.1175/1520-0469(1999)056<1055:IOTPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., 1999b: Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results. J. Atmos. Sci., 56, 10771087, doi:10.1175/1520-0469(1999)056<1077:IOHSAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Janjić T. , 2005: Twenty-four-hour observations of the marine boundary layer using shipborne NOAA high-resolution Doppler lidar. J. Appl. Meteor., 44, 17231744, doi:10.1175/JAM2296.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., Pal S. , Turner D. D. , and Wagner E. , 2010: Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Bound.-Layer Meteor., 136, 253284, doi:10.1007/s10546-010-9494-z.

    • Search Google Scholar
    • Export Citation
  • Xie, B., Fung J. C. H. , Chan A. , and Lau A. , 2012: Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J. Geophys. Res., 117, D12103, doi:10.1029/2011JD017080.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 130 81 0
PDF Downloads 109 76 0

Aircraft Evaluation of Ground-Based Raman Lidar Water Vapor Turbulence Profiles in Convective Mixed Layers

View More View Less
  • 1 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NASA Langley Research Center, Hampton, Virginia
  • | 3 University of Hohenheim, Stuttgart, Germany
  • | 4 Science Systems and Applications, Inc., Hampton, Virginia
Restricted access

Abstract

High temporal and vertical resolution water vapor measurements by Raman and differential absorption lidar systems have been used to characterize the turbulent fluctuations in the water vapor mixing ratio field in convective mixed layers. Since daytime Raman lidar measurements are inherently noisy (due to solar background and weak signal strengths), the analysis approach needs to quantify and remove the contribution of the instrument noise in order to derive the desired atmospheric water vapor mixing ratio variance and skewness profiles. This is done using the approach outlined by Lenschow et al.; however, an intercomparison with in situ observations was not performed.

Water vapor measurements were made by a diode laser hygrometer flown on a Twin Otter aircraft during the Routine Atmospheric Radiation Measurement (ARM) Program Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site in 2009. Two days with Twin Otter flights were identified where the convective mixed layer was quasi stationary, and hence the 10-s, 75-m data from the SGP Raman lidar could be analyzed to provide profiles of water vapor mixing ratio variance and skewness. Airborne water vapor observations measured during level flight legs were compared to the Raman lidar data, demonstrating good agreement in both variance and skewness. The results also illustrate the challenges of comparing a point sensor making measurements over time to a moving platform making similar measurements horizontally.

Corresponding author address: Dr. David Turner, National Severe Storms Laboratory, NOAA, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: dave.turner@noaa.gov

Abstract

High temporal and vertical resolution water vapor measurements by Raman and differential absorption lidar systems have been used to characterize the turbulent fluctuations in the water vapor mixing ratio field in convective mixed layers. Since daytime Raman lidar measurements are inherently noisy (due to solar background and weak signal strengths), the analysis approach needs to quantify and remove the contribution of the instrument noise in order to derive the desired atmospheric water vapor mixing ratio variance and skewness profiles. This is done using the approach outlined by Lenschow et al.; however, an intercomparison with in situ observations was not performed.

Water vapor measurements were made by a diode laser hygrometer flown on a Twin Otter aircraft during the Routine Atmospheric Radiation Measurement (ARM) Program Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site in 2009. Two days with Twin Otter flights were identified where the convective mixed layer was quasi stationary, and hence the 10-s, 75-m data from the SGP Raman lidar could be analyzed to provide profiles of water vapor mixing ratio variance and skewness. Airborne water vapor observations measured during level flight legs were compared to the Raman lidar data, demonstrating good agreement in both variance and skewness. The results also illustrate the challenges of comparing a point sensor making measurements over time to a moving platform making similar measurements horizontally.

Corresponding author address: Dr. David Turner, National Severe Storms Laboratory, NOAA, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: dave.turner@noaa.gov
Save