• Annamalai, H., and Slingo J. M. , 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, doi:10.1007/s003820100161.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and Randall D. A. , 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Bharadwaj, N., and Chandrasekar V. , 2012: Wideband waveform design principles for solid-state weather radars. J. Atmos. Oceanic Technol., 29, 1431, doi:10.1175/JTECH-D-11-00030.1.

    • Search Google Scholar
    • Export Citation
  • Bharadwaj, N., Lindenmaier A. , Widener K. B. , Johnson K. L. , and Venkatesh V. , 2013: Ka-band ARM zenith profiling radar (KAZR) network for climate study. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 14A.8. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Manuscript/Paper228620/14A8_ams_radconf_kazr.pdf.]

  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274, doi:10.1175/BAMS-86-9-1263.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., Jones C. , and Ambrizzi T. , 2005: Opposite phases of the Antarctic Oscillation and relationships with intraseasonal to interannual activity in the tropics during the austral summer. J. Climate, 18, 702718, doi:10.1175/JCLI-3284.1.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., Protat A. , McFarlane S. A. , Delanoe J. , and Deng M. , 2013: Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm differences: Analysis using 3 years of ARM data at Darwin, Australia. J. Geophys. Res., 118, 4549–4571, doi:10.1002/jgrd.50404.

    • Search Google Scholar
    • Export Citation
  • Deng, L., McFarlane S. A. , and Flaherty J. E. , 2013: Characteristics associated with the Madden–Julian oscillation at Manus Island. J. Climate, 26, 33423356, doi:10.1175/JCLI-D-12-00312.1.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., and Hubbert J. C. , 2012: The separation of noise and signal components in Doppler radar returns. Proc. Seventh European Conf. on Radar in Meteorology and Hydrology, Toulouse, France, Météo-France, 13B.1. [Available online at http://www.meteo.fr/cic/meetings/2012/ERAD/short_abs/SP_078_sh_abs.pdf.]

  • Ellis, S. M., and Vivekanandan J. , 2010: Water vapor estimates using simultaneous dual-wavelength radar observations. Radio Sci., 45, RS5002, doi:10.1029/2009RS004280.

    • Search Google Scholar
    • Export Citation
  • Ellis, S. M., and Vivekanandan J. , 2011: Liquid water content estimates using simultaneous S and Ka band radar measurements. Radio Sci., 46, RS2021, doi:10.1029/2010RS004361.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., Dong X. , and Xi B. , 2009: A method to merge WSR-88D data with ARM SGP millimeter cloud radar data by studying deep convective systems. J. Atmos. Oceanic Technol., 26, 958971, doi:10.1175/2008JTECHA1190.1.

    • Search Google Scholar
    • Export Citation
  • Fliegel, J. M., and Schumacher C. , 2012: Quality control and census of SMART-R observations from the DYNAMO/CINDY2011 field campaign. M.S. thesis, Dept. of Atmospheric Sciences, Texas A&M University, 82 pp.

  • Hendon, H. H., and Liebmann B. , 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 29092924, doi:10.1175/1520-0469(1990)047<2909:TIDOOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., Dixon M. , Ellis S. M. , and Meymaris G. , 2009a: Weather radar ground clutter. Part I: Identification, modeling, and simulation. J. Atmos. Oceanic Technol., 26, 11651180, doi:10.1175/2009JTECHA1159.1.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., Dixon M. , and Ellis S. M. , 2009b: Weather radar ground clutter. Part II: Real-time identification and filtering. J. Atmos. Oceanic Technol., 26, 11811197, doi:10.1175/2009JTECHA1160.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., Rickenbach T. M. , Rutledge S. A. , Ciesielski P. E. , and Schubert W. H. , 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keeler, R. J., Lutz J. , and Vivekanandan J. , 2000: S-Pol: NCAR’s polarimetric Doppler research radar. IGARS 2000: IEEE 2000 International Geoscience and Remote Sensing Symposium, T. I. Stein, Ed., Vol. 4, 1570–1573, doi:10.1109/IGARSS.2000.857275.

  • Kemball-Cook, S. R., and Weare B. C. , 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Miller M. A. , Luke E. P. , Johnson K. L. , Clothiaux E. E. , Moran K. P. , Widener K. B. , and Albrecht B. A. , 2007: The Atmospheric Radiation Measurement Program Cloud Profiling Radars: Second-generation sampling strategies, processing, and cloud data products. J. Atmos. Oceanic Technol., 24, 11991214, doi:10.1175/JTECH2033.1.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol., 7, 464479, doi:10.1175/1520-0426(1990)007<0464:AASOMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, H., Brunet G. , and Derome J. , 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, doi:10.1175/2008JCLI2515.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and Coauthors, 2013: ARM research in the equatorial western Pacific: A Decade and counting. Bull. Amer. Meteor. Soc., 94, 695708, doi:10.1175/BAMS-D-11-00137.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and Hartmann D. L. , 2006: The effect of the MJO on the North American monsoon. J. Climate, 19, 333343, doi:10.1175/JCLI3684.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and Julian P. R. , 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and Julian P. R. , 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and Voyles J. W. , 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., McFarlane S. A. , Miller M. A. , and Johnson K. L. , 2007: Cloud properties and associated radiative heating rates in the tropical western Pacific. J. Geophys. Res., 112, D05201, doi:10.1029/2006JD007555.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2008: Assessment of radar signal attenuation caused by the melting hydrometeor layer. IEEE Trans. Geosci. Remote Sens., 46, 10391047, doi:10.1109/TGRS.2008.915757.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2009: A method to estimate vertically integrated amounts of cloud ice and liquid and mean rain rate in stratiform precipitation from radar and auxiliary data. J. Appl. Meteor. Climatol., 48, 13981410, doi:10.1175/2009JAMC2106.1.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., Mather J. H. , and Ackerman T. P. , 2007: Analysis of tropical radiative heating profiles: A comparison of models and observations. J. Geophys. Res., 112, D14218, doi:10.1029/2006JD008290.

    • Search Google Scholar
    • Export Citation
  • Miller, M. A., Verlinde J. , Gilbert C. V. , Lehenbauer G. J. , Tongue J. S. , and Clothiaux E. E. , 1998: Detection of nonprecipitating clouds with the WSR-88D: A theoretical and experimental survey of capabilities and limitations. Wea. Forecasting, 13, 10461062, doi:10.1175/1520-0434(1998)013<1046:DONCWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., and Coauthors, 2008: Vertical cloud properties in the tropical western Pacific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar. J. Geophys. Res., 113, D24213, doi:10.1029/2008JD009812.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2009: Assessment of Cloudsat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26, 17171741, doi:10.1175/2009JTECHA1246.1.

    • Search Google Scholar
    • Export Citation
  • Riihimaki, L. D., and McFarlane S. A. , 2010: Frequency and morphology of tropical tropopause layer cirrus from CALIPSO observations: Are isolated cirrus different from those connected to deep convection? J. Geophys. Res., 115, D18201, doi:10.1029/2009JD013133.

    • Search Google Scholar
    • Export Citation
  • Riihimaki, L. D., McFarlane S. A. , and Comstock J. M. , 2012: Climatology and formation of tropical midlevel clouds at the Darwin ARM site. J. Climate, 25, 68356850, doi:10.1175/JCLI-D-11-00599.1.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and McCreary J. P. Jr., 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, doi:10.1016/S0079-6611(01)00083-0.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, doi:10.1029/2007GL031008.

  • Stith, J. L., Dye J. E. , Bansemer A. , Heymsfield A. J. , Grainger C. A. , Petersen W. A. , and Cifelli R. , 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41, 97117, doi:10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and Short D. A. , 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Clough S. A. , Liljegren J. C. , Clothiaux E. E. , Cady-Pereira K. E. , and Gaustad K. L. , 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens.,45, 3680–3690.

  • Vivekanandan, J., Zhang G. , Ellis S. M. , Rajopadhyaya D. , and Avery S. K. , 2003: Radar reflectivity calibration using differential propagation phase measurement. Radio Sci., 38, 8049, doi:10.1029/2002RS002676.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., Lussky G. R. , and Kutzbach J. E. , 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941961, doi:10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2010: Clouds and more: ARM climate modeling best estimate data. Bull. Amer. Meteor. Soc., 91, 1320, doi:10.1175/2009BAMS2891.1.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., Zhang C. , and Long C. N. , 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and Hagos S. M. , 2009: Bi-modal structure and variability of large-scale diabatic heating in the tropics. J. Atmos. Sci., 66, 36213640, doi:10.1175/2009JAS3089.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Dong M. , Gualdi S. , Hendon H. H. , Maloney E. D. , Marshall A. , Sperber K. R. , and Wang W. , 2006: Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573592, doi:10.1007/s00382-006-0148-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Gottschalck J. , Maloney E. D. , Moncrieff M. W. , Vitart F. , Waliser D. E. , B. Wang, and Wheeler M. C. , 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 12231230, doi:10.1002/grl.50244.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2012: Toward understanding of differences in current cloud retrievals of ARM ground-based measurements. J. Geophys. Res., 117, D10206, doi:10.1029/2011JD016792.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., and Miller A. J. , 2005: The interaction of the Madden–Julian Oscillation and the Arctic Oscillation. J. Climate, 18, 143159, doi:10.1175/JCLI3251.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 22
PDF Downloads 4 4 4

Constructing a Merged Cloud–Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

View More View Less
  • 1 Pacific Northwest National Laboratory, Richland, Washington
  • | 2 Department of Atmospheric Sciences, Texas A&M University, Collage Station, Texas
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
  • | 4 Pacific Northwest National Laboratory, Richland, Washington
Restricted access

Abstract

To improve understanding of the convective processes key to the Madden–Julian oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and the Atmospheric Radiation Measurement Program (ARM) MJO Investigation Experiment (AMIE) collected 4 months of observations from three radars—the S-band dual-polarization Doppler radar (S-Pol), the C-band Shared Mobile Atmospheric Research and Teaching Radar (SMART-R), and Ka-band ARM zenith radar (KAZR)—along with radiosonde and comprehensive surface meteorological instruments on Addu Atoll, Maldives, in the tropical Indian Ocean. One DYNAMO/AMIE hypothesis suggests that the evolution of shallow and congestus cloud populations is essential to the initiation of the MJO. This study focuses on evaluating the ability of these three radars to document the full spectrum of cloud populations and to construct a merged cloud–precipitation radar dataset that can be used to test this hypothesis. Comparisons between collocated observations from the three radars show that KAZR provides the only reliable estimate of shallow clouds, while S-Pol/SMART-R can reasonably detect congestus within the 30–50-km range in addition to precipitating deep clouds. On the other hand, KAZR underestimates cloud-top heights due to rainfall attenuation in ~34% of the precipitating clouds, and an empirical method to correct KAZR cloud-top height bias is proposed. Finally, a merged KAZR–S-Pol dataset is produced to provide improved cloud-top height estimates, total hydrometeor microphysics, and radiative heating rate retrievals. With this dataset the full spectrum of tropical convective clouds during DYNAMO/AMIE can be reliably constructed and, together with complimentary radiosonde data, it can be used to study the role of shallow and congestus clouds in the initiation of the MJO.

Current affiliation: Climate and Environmental Sciences Division, U.S. Department of Energy, Washington, D.C.

Corresponding author address: Dr. Zhe Feng, Pacific Northwest National Laboratory, P.O. Box 999, MS K9-24, Richland, WA 99352. E-mail: zhe.feng@pnnl.gov.

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

To improve understanding of the convective processes key to the Madden–Julian oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and the Atmospheric Radiation Measurement Program (ARM) MJO Investigation Experiment (AMIE) collected 4 months of observations from three radars—the S-band dual-polarization Doppler radar (S-Pol), the C-band Shared Mobile Atmospheric Research and Teaching Radar (SMART-R), and Ka-band ARM zenith radar (KAZR)—along with radiosonde and comprehensive surface meteorological instruments on Addu Atoll, Maldives, in the tropical Indian Ocean. One DYNAMO/AMIE hypothesis suggests that the evolution of shallow and congestus cloud populations is essential to the initiation of the MJO. This study focuses on evaluating the ability of these three radars to document the full spectrum of cloud populations and to construct a merged cloud–precipitation radar dataset that can be used to test this hypothesis. Comparisons between collocated observations from the three radars show that KAZR provides the only reliable estimate of shallow clouds, while S-Pol/SMART-R can reasonably detect congestus within the 30–50-km range in addition to precipitating deep clouds. On the other hand, KAZR underestimates cloud-top heights due to rainfall attenuation in ~34% of the precipitating clouds, and an empirical method to correct KAZR cloud-top height bias is proposed. Finally, a merged KAZR–S-Pol dataset is produced to provide improved cloud-top height estimates, total hydrometeor microphysics, and radiative heating rate retrievals. With this dataset the full spectrum of tropical convective clouds during DYNAMO/AMIE can be reliably constructed and, together with complimentary radiosonde data, it can be used to study the role of shallow and congestus clouds in the initiation of the MJO.

Current affiliation: Climate and Environmental Sciences Division, U.S. Department of Energy, Washington, D.C.

Corresponding author address: Dr. Zhe Feng, Pacific Northwest National Laboratory, P.O. Box 999, MS K9-24, Richland, WA 99352. E-mail: zhe.feng@pnnl.gov.

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save