• Baringer, M. O., and Larsen J. C. , 2001: Sixteen years of Florida Current transport at 27°N. Geophys. Res. Lett., 28, 31793182, doi:10.1029/2001GL013246.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and Thomson R. E. , 2004: Data Analysis Methods in Physical Oceanography. Elsevier, 638 pp.

  • Farrell, J. A., and Barth M. , 1999: The Global Positioning System and Inertial Navigation. McGraw-Hill, 370 pp.

  • Firing, E., 1998: Lowered ADCP development and use in WOCE. International WOCE Newsletter, No. 30, WOCE International Project Office, Southampton, United Kingdom, 10–14.

  • Firing, E., and Gordon R. , 1990: Deep ocean acoustic Doppler current profiling. Proceedings of the IEEE Fourth Working Conference on Current Measurement, Institute of Electrical and Electronics Engineers, 192201, doi:10.1109/CURM.1990.110905

  • Fischer, J., and Visbeck M. , 1993: Deep velocity profiling with self-contained ADCPs. J. Atmos. Oceanic Technol., 10, 764773, doi:10.1175/1520-0426(1993)010<0764:DVPWSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grewal M. S., Weill L. R. , and Andrews A. P. , 2007: Global Positioning Systems, Inertial Navigation, and Integration. Wiley-Interscience, 416 pp.

  • Hacker, P., Firing E. , Wilson W. D. , and Molinari R. , 1996: Direct observations of the current structure east of the Bahamas. Geophys. Res. Lett., 23, 11271130, doi:10.1029/96GL01031.

    • Search Google Scholar
    • Export Citation
  • Larsen, J. C., 1992: Transport and heat flux of the Florida Current at 27°N derived from cross-stream voltages and profiling data: Theory and observations. Philos. Trans. Roy. Soc. London, 338, 169236, doi:10.1098/rsta.1992.0007.

    • Search Google Scholar
    • Export Citation
  • Larsen, J. C., and Sanford T. B. , 1985: Florida Current volume transports from voltage measurements. Science, 227, 302304, doi:10.1126/science.227.4684.302.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., Molinari R. L. , and Vertes P. S. , 1987: Structure and variability of the Florida Current at 27°N: April 1982–July 1984. J. Phys. Oceanogr., 17, 565583, doi:10.1175/1520-0485(1987)017<0565:SAVOTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., Vertes P. S. , Atkinson L. P. , Lee T. N. , Hamilton P. , and Waddell E. , 1995: Transport, potential vorticity and current/temperature structure across northwest Providence and Santaren Channels and the Florida Current off Cay Sal Bank. J. Geophys. Res., 100, 85618569, doi:10.1029/94JC01436.

    • Search Google Scholar
    • Export Citation
  • Mayer, D. A., Leaman K. D. , and Lee T. N. , 1984: Tidal motions in the Florida Current. J. Phys. Oceanogr., 14, 15511559, doi:10.1175/1520-0485(1984)014<1551:TMITFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., Baringer M. O. , and Garcia R. F. , 2010: Florida Current transport variability: An analysis of annual and longer-period signals. Deep-Sea Res. I, 57, 835846, doi:10.1016/j.dsr.2010.04.001.

    • Search Google Scholar
    • Export Citation
  • Molinari, R. L., and Coauthors, 1985a: Subtropical Atlantic climate studies: Introduction. Science, 227, 292295, doi:10.1126/science.227.4684.292.

    • Search Google Scholar
    • Export Citation
  • Molinari, R. L., Wilson W. D. , and Leaman K. , 1985b: Volume and heat transport of the Florida Current: April 1982 through August 1983. Science, 227, 295297, doi:10.1126/science.227.4684.295.

    • Search Google Scholar
    • Export Citation
  • Mooers, C. N. K., Meinen C. S. , Baringer M. O. , Bang I. , Rhodes R. , Barron C. N. , and Bub F. , 2005: Cross validating ocean prediction and monitoring systems. Eos, Trans. Amer. Geophys. Union, 86, 269273, doi:10.1029/2005EO290002.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and Richardson W. S. , 1973: Seasonal variability of the Florida Current. J. Mar. Res., 31, 144167.

  • Pawlowicz, R., Beardsley R. , and Lentz S. , 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_Tide. Comput. Geosci., 28, 929937, doi:10.1016/S0098-3004(02)00013-4.

    • Search Google Scholar
    • Export Citation
  • Pillsbury, J. E., 1891: The Gulf Stream—A description of the methods employed in the investigation, and the results of the research. Report of the superintendent of the U.S. Coast and Geodetic Survey showing the progress of the work during the fiscal year ending with June, 1890, Appendix 10—1890, NOAA, 461620. [Available online at http://docs.lib.noaa.gov/rescue/cgs/002_pdf/CSC-0089.pdf.]

  • Richardson, W. S., and Schmitz W. J. Jr., 1965: A technique for the direct measurement of transport with application to the Straits of Florida. J. Mar. Res., 23, 172185.

    • Search Google Scholar
    • Export Citation
  • Richardson, W. S., Carr A. R. , and White H. J. , 1969: Description of a freely dropped instrument for measuring current velocity. J. Mar. Res., 27, 153157.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., Fontaine J. , and Hummon J. , 1991: Measuring mean velocity with POGO. J. Atmos. Oceanic Technol., 8, 713717, doi:10.1175/1520-0426(1991)008<0713:MMVWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rousset, C., and Beal L. M. , 2011: On the seasonal variability of the currents in the Straits of Florida and Yucatan Channel. J. Geophys. Res., 116, C08004, doi:10.1029/2010JC006679.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., 1982: Temperature transport and motional induction in the Florida Current. J. Mar. Res., 40, 621639.

  • Schmitz, W. J., Jr., and Richardson W. S. , 1968: On the transport of the Florida Current. Deep-Sea Res., 15, 679693.

  • Schott, F. A., Lee T. N. , and Zantopp R. , 1988: Variability of structure and transport of the Florida Current in the period range of days to seasonal. J. Phys. Oceanogr., 18, 12091230, doi:10.1175/1520-0485(1988)018<1209:VOSATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spain, P. F., Dorson D. L. , and Rossby H. T. , 1981: PEGASUS: A simple, acoustically tracked, velocity profiler. Deep-Sea Res., 28A, 15531567, doi:10.1016/0198-0149(81)90097-2.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The theory of the electric field induced in deep ocean currents. J. Mar. Res., 7, 386392.

  • Stommel, H., 1957: Florida Straits transports: 1952-1956. Bull. Mar. Sci. Gulf Caribb., 7, 252254.

  • Stommel, H., 1959: Florida Straits transports: June 1956-July 1958. Bull. Mar. Sci. Gulf Caribb., 9, 222223.

  • Szuts, Z. B., 2012: Using motionally-induced electric signals to indirectly measure ocean velocity: Instrumental and theoretical developments. Prog. Oceanogr., 96, 108127, doi:10.1016/j.pocean.2011.11.014.

    • Search Google Scholar
    • Export Citation
  • Szuts, Z. B., and Meinen C. , 2013: Salinity transport in the Florida Straits. J. Atmos. Oceanic Technol., 30, 971983, doi:10.1175/JTECH-D-12-00133.1.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., 2010: A practical assessment of the errors associated with full-depth LADCP profiles obtained using Teledyne RDI Workhorse acoustic Doppler current profilers. J. Atmos. Oceanic Technol., 27, 12151227, doi:10.1175/2010JTECHO708.1.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2002: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions. J. Atmos. Oceanic Technol., 19, 794807, doi:10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 1 1 1

Accuracy of Florida Current Volume Transport Measurements at 27°N Using Multiple Observational Techniques

View More View Less
  • 1 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • | 2 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Restricted access

Abstract

For more than 30 years, the volume transport of the Florida Current at 27°N has been regularly estimated both via voltage measurements on a submarine cable and using ship-based measurements of horizontal velocity at nine historical stations across the Florida Straits. A comparison of three different observational systems is presented, including a detailed evaluation of observational accuracy and precision. The three systems examined are dropsonde (free-falling float), lowered acoustic Doppler current profiler (LADCP), and submarine cable. The accuracy of the Florida Current transport calculation from dropsonde sections, which can be determined from first principles with existing data, is shown to be 0.8 Sv (1 Sv ≡ 106 m3 s−1). Side-by-side comparisons between dropsonde and LADCP measurements are used to show that the LADCP-based transport estimates are accurate to within 1.3 Sv. Dropsonde data are often used to set the absolute mean cable transport estimate, so some care is required in establishing the absolute accuracy of the cable measurements. Used together, the dropsonde and LADCP sections can be used to evaluate the absolute accuracy and precision of the cable measurements. These comparisons suggest the daily cable observations are accurate to within 1.7 Sv, and analysis of the decorrelation time scales for the errors suggests that annual transport averages from the cable are accurate to within 0.3 Sv. The implications of these accuracy estimates for long-term observation of the Florida Current are discussed in the context of maintaining this key climate record.

Corresponding author address: Rigoberto Garcia, Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: rigoberto.garcia@noaa.gov

Abstract

For more than 30 years, the volume transport of the Florida Current at 27°N has been regularly estimated both via voltage measurements on a submarine cable and using ship-based measurements of horizontal velocity at nine historical stations across the Florida Straits. A comparison of three different observational systems is presented, including a detailed evaluation of observational accuracy and precision. The three systems examined are dropsonde (free-falling float), lowered acoustic Doppler current profiler (LADCP), and submarine cable. The accuracy of the Florida Current transport calculation from dropsonde sections, which can be determined from first principles with existing data, is shown to be 0.8 Sv (1 Sv ≡ 106 m3 s−1). Side-by-side comparisons between dropsonde and LADCP measurements are used to show that the LADCP-based transport estimates are accurate to within 1.3 Sv. Dropsonde data are often used to set the absolute mean cable transport estimate, so some care is required in establishing the absolute accuracy of the cable measurements. Used together, the dropsonde and LADCP sections can be used to evaluate the absolute accuracy and precision of the cable measurements. These comparisons suggest the daily cable observations are accurate to within 1.7 Sv, and analysis of the decorrelation time scales for the errors suggests that annual transport averages from the cable are accurate to within 0.3 Sv. The implications of these accuracy estimates for long-term observation of the Florida Current are discussed in the context of maintaining this key climate record.

Corresponding author address: Rigoberto Garcia, Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: rigoberto.garcia@noaa.gov
Save