• Bahurel, P., and Coauthors, 2010: Ocean monitoring and forecasting core services, the European MyOcean example. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 1, ESA Publ. WPP-306, doi:10.5270/OceanObs09.pp.02.

  • Barton, I. J., Minnett P. J. , Maillet K. A. , Donlon C. J. , Hook S. J. , Jessup A. T. , and Nightingale T. J. , 2004: The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results. J. Atmos. Oceanic Technol., 21, 268283, doi:10.1175/1520-0426(2004)021<0268:TMIRCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, S., 1999: Measurement good practice guide: A beginner’s guide to uncertainty of measurement. No. 11, Issue 2, 33 pp. [Available from National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom.]

  • Berry, K. H., 1981: Emissivity of a cylindrical black-body cavity with a re-entrant cone end face. J. Phys., 14E, 629, doi:10.1088/0022-3735/14/5/023.

    • Search Google Scholar
    • Export Citation
  • Bras, B., 2013: Thermo-optical properties of NEXTEL velvet suede coating 3103 for Sentinel 3. ESA/ESTEC/TEC-QTE Rep. 7417, 16 pp. [Available from ESA/ESTEC, Keplerlaan 1, 2200 AG Noordwijk, Netherlands.]

  • Coll, C., Valor E. , Galve J. M. , Mira M. , Bisquert M. , García-Santos V. , Caselles E. , and Caselles V. , 2011: Long-term accuracy assessment of land surface temperatures derived from the Advanced Along-Track Scanning Radiometer. Remote Sens. Environ., 116, 211–225, http://dx.doi.org/10.1016/j.rse.2010.01.027.

    • Search Google Scholar
    • Export Citation
  • Coppo, P., and Coauthors, 2010: SLSTR: A high accuracy dual scan temperature radiometer for sea and land surface monitoring from space. J. Mod. Opt.,57, 1815–1830, doi:10.1080/09500340.2010.503010.

  • Corlett, G. K., and Coauthors, 2006: The accuracy of SST retrievals from AATSR: An initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets. Adv. Space Res., 37, 764769, doi:10.1016/j.asr.2005.09.037.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and Nightingale T. J. , 2000: The effect of atmospheric radiance errors in radiometric sea surface temperature measurements. Appl. Opt., 39, 23872392, doi:10.1364/AO.39.002387.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Nightingale T. J. , Fielder L. , Fisher G. , Baldwin D. , and Robinson I. S. , 1999: The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity. J. Atmos. Oceanic Technol., 16, 11831192, doi:10.1175/1520-0426(1999)016<1183:TCAIOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and Coauthors, 2007: The Global Ocean Data Assimilation Experiment High-Resolution Sea Surface Temperature Pilot Project. Bull. Amer. Meteor. Soc.,88, 1197–1213, doi:10.1175/BAMS-88-8-1197.

  • Donlon, C. J., Robinson I. S. , Reynolds M. , Wimmer W. , Fisher G. , Edwards R. , and Nightingale T. J. , 2008: An Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) for deployment aboard volunteer observing ships (VOS). J. Atmos. Oceanic Technol., 25, 93113, doi:10.1175/2007JTECHO505.1.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and Coauthors, 2009: The GODAE High-Resolution Sea Surface Temperature Pilot Project (GHRSST-PP). Oceanography, 22, 3445, doi:10.5670/oceanog.2009.64.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and Coauthors, 2012: The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ., 120, 3757, doi:10.1016/j.rse.2011.07.024.

    • Search Google Scholar
    • Export Citation
  • Dybkjær, G., Tonboe R. , and Høyer J. , 2012: Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data. Ocean Sci. Discuss.,9, 1009–1043, doi:10.5194/osd-9-1009-2012.

  • Fowler, J. B., 1995: A third generation water bath based blackbody source. J. Res. Natl. Inst. Stand. Technol., 100, 591, doi:10.6028/jres.100.044.

    • Search Google Scholar
    • Export Citation
  • Fowler, J. B., 1996: An oil-bath-based 293 K to 473 K blackbody source. J. Res. Natl. Inst. Stand. Technol., 101, 629, doi:10.6028/jres.101.062.

    • Search Google Scholar
    • Export Citation
  • GCOS-Secretariat, 2009: Guideline for the generation of satellite-based datasets and products meeting GCOS requirements. GCOS-128, WMO/TD-1488, 12 pp. [Available online at http://www.wmo.int/pages/prog/gcos/Publications/gcos-128.pdf.]

  • GCOS-Secretariat, 2011: Systematic observation requirements for satellite-based products for climate: Supplemental details to the satellite-based component of the “Implementation Plan for the Global Observing System for Climate in support of the UNFCCC (2010 update); 2011 update.” GCOS 154, 127 pp. [Available online at http://www.wmo.int/pages/prog/gcos/Publications/gcos-154.pdf.]

  • Geist, J., and Fowler J. B. , 1986: A water bath blackbody for the 5 to 60°C temperature range: Performance goals, design concept, and test results. U.S. National Bureau of Standards and Technology Tech. Note 1228, 16 pp.

  • Guan, L., Zhang K. , and Teng W. , 2011: Shipboard measurements of skin SST in the China seas: Validation of satellite SST products. 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS): Proceedings, IEEE, 2005–2008, doi:10.1109/IGARSS.2011.6049522.

  • Jessup, A. T., Fogelberg R. , and Minnett P. , 2002: Autonomous shipboard infrared radiometer system for in situ validation of satellite SST. Earth Observing Systems VII, W. L. Barnes, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 4814), 222, doi:10.1117/12.451782.

  • Kannenberg, R., 1998: IR instrument comparison workshop at the Rosenstiel School of Marine and Atmospheric Science (RSMAS). The Earth Observer, Vol. 10 (3), Earth Observing System Project Science Office, Greenbelt, MD, 51–54.

  • Legaie, D., Pron H. , Bissieux C. , and Blain V. , 2008: Thermographic application of black coatings on metals. Preprints, Ninth Int. Conf. on Quantitative Infrared Thermography, Krakow, Poland, Technical University of Lodz and AGH University of Science and Technology, 597–604. [Available online at http://qirt.gel.ulaval.ca/archives/qirt2008/papers/15_08_12.pdf.]

    • Search Google Scholar
    • Export Citation
  • Lohrengel, R., and Todtenhaupt R. , 1996: Wämeleitfähigkeit, Gestamtemmissionsgrade und spektrale Emissionsgrade der Beschichtung NEXTEL-Velvet-Coating 811-211 (RAL 900 15 teif-shwartz matt). PTB-Mitt., 106, 259265.

    • Search Google Scholar
    • Export Citation
  • Mason, I. M., Sheather P. H. , Bowles J. A. , and Davies G. , 1996: Blackbody calibration sources of high accuracy for a spaceborne infrared instrument: The Along Track Scanning Radiometer. Appl. Opt., 35, 629639, doi:10.1364/AO.35.000629.

    • Search Google Scholar
    • Export Citation
  • McKelvie, J., 1987: Consideration of the surface temperature response to cyclic thermoelastic heat generation. Stress Analysis by Thermoelastic Techniques, B. C. Gasper, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 731), 44, doi:10.1117/12.937886.

  • Meldrum, D., Charpantier E. , Fedak M. , Lee B. , Lumpkin R. , Niller P. , and Viola H. , 2010: Data buoy observations: The status quo and anticipated developments over the next decade. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306, doi:10.5270/OceanObs09.cwp.62.

  • Merchant, C. J., and Coauthors, 2012: A 20 year independent record of sea surface temperature for climate from Along-Track Scanning Radiometers. J. Geophys. Res., 117, C12013, doi:10.1029/2012JC008400.

    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., 2010: The validation of sea surface temperature retrievals from spaceborne infrared radiometers. Oceanography from Space, Revisited, V. Barale, J. F. R. Gower, and L. Alberotanza, Eds., Springer Science and Business Media, 229–248, doi:10.1007/978-90-481-8681-5.

  • Minnett, P. J., and Corlett G. K. , 2012: A pathway to generating climate data records of sea-surface temperature from satellite measurements. Deep-Sea Res. II, 77–80, 4451, doi:10.1016/j.dsr2.2012.04.003.

    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., Knuteson R. O. , Best F. A. , Osborne B. J. , Hanafin J. A. , and Brown O. B. , 2001: The Marine–Atmospheric Emitted Radiance Interferometer: A high-accuracy seagoing infrared spectroradiometer. J. Atmos. Oceanic Technol., 18, 9941013, doi:10.1175/1520-0426(2001)018<0994:TMAERI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noyes, E. J., Minnett P. J. , Remedios J. J. , Corlett G. K. , Good S. A. , and Llewellyn-Jones D. T. , 2006: The accuracy of the AATSR sea surface temperatures in the Caribbean. Remote Sens. Environ., 101, 3851, doi:10.1016/j.rse.2005.11.011.

    • Search Google Scholar
    • Export Citation
  • Persky, M. J., 1999: Review of black surfaces for space-borne infrared systems. Rev. Sci. Instrum., 70, 21932217, doi:10.1063/1.1149739.

    • Search Google Scholar
    • Export Citation
  • QA4EO Task Team, 2010: A quality assurance framework for Earth observation: Principles, version 4. Group on Earth Observations, 17 pp. [Available online at http://qa4eo.org/docs/QA4EO_Principles_v4.0.pdf.]

  • Rice, J., and Coauthors, 2004: The Miami2001 infrared radiometer calibration and intercomparison. Part I: Laboratory characterization of blackbody targets. J. Atmos. Oceanic Technol., 21, 258267, doi:10.1175/1520-0426(2004)021<0258:TMIRCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. F., Dulieu-Barton J. M. , Quinn S. , and Burguete R. L. , 2010: Paint coating characterization for thermoelastic stress analysis of metallic materials. Meas. Sci. Technol., 21, 085502, doi:10.1088/0957-0233/21/8/085502.

    • Search Google Scholar
    • Export Citation
  • Sea-Bird Electronics, Inc., 2011: SBE 38 digital oceanographic thermometer user’s manual. Version 13, 03-23-11, 33 pp. [Available from Sea-Bird Electronics, Inc., 13431 NE 20th Street, Bellevue, WA 98005.]

  • Theocharous, E., and Fox N. P. , 2010: CEOS comparison of IR brightness temperature measurements in support of satellite validation. Part II: Laboratory comparison of the brightness temperature of blackbodies, National Physical Laboratory Rep. OP-4, 43 pp.

  • Theocharous, E., Fox N. P. , Sapritsky V. I. , Mekhontsev S. N. , and Morozova S. P. , 1998: Absolute measurements of black-body emitted radiance. Metrologia, 35, 549, doi:10.1088/0026-1394/35/4/58.

    • Search Google Scholar
    • Export Citation
  • Theocharous, E., Usadi E. , and Fox N. P. , 2010: CEOS comparison of IR brightness temperature measurements in support of satellite validation. Part I: Laboratory and ocean surface temperature comparison of radiation thermometers, National Physical Laboratory Rep. OP-3, 130 pp.

  • Wimmer, W., Robinson I. , and Donlon C. , 2012: Long-term validation of AATSR SST data products using shipborne radiometry in the Bay of Biscay and English Channel. Remote Sens. Environ., 116, 1731, doi:10.1016/j.rse.2011.03.022.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 400 178 0
PDF Downloads 381 160 0

A Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers

View More View Less
  • 1 European Space Agency, Noordwijk, Netherlands
  • | 2 National Oceanography Centre, University of Southampton, Southampton, United Kingdom
  • | 3 Space Science and Technology Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
  • | 4 European Space Agency, Noordwijk, Netherlands
Restricted access

Abstract

Quasi-operational shipborne radiometers provide a fiducial reference measurement (FRM) for satellite validation of satellite sea surface skin temperature (SSTskin) retrievals. External reference blackbodies are required to verify the performance and to quantify the accuracy of the radiometer calibration system. They provide a link in an unbroken chain of comparisons between the shipborne radiometer and a traceable reference standard. A second-generation water bath blackbody reference radiance source has been developed for this purpose. The second generation Concerted Action for the Study of the Ocean Thermal Skin (CASOTS-II) blackbody has a 110-mm-diameter aperture cylinder-cone geometry coated with NEXTEL suede 3103 paint. Interchangeable aperture stops reduce the cavity aperture diameter and minimize stray radiation. Monte Carlo modeling techniques show the effective emissivity of the cavity to be >0.9999 (aperture < 30 mm). The cavity is immersed in a water bath that is vigorously stirred using a pump that slowly heats the water bath at a mean rate of ~0.6 K h−1. The temperature of the water bath is measured using a thermometer traceable to the International System of Units (SI) standards. The worst-case radiance temperature of the CASOTS-II blackbody system is traceable to the SI with an uncertainty of 58 mK (millikelvin). When operating under typical laboratory conditions using an aperture of 40 mm, the uncertainty is 16 mK. An intercomparison with the U.K. National Physical Laboratory Absolute Measurements of Blackbody Emitted Radiance (AMBER) reference radiometer found no significant differences within 75 mK (110-mm aperture) or 50 mK (40-mm aperture), which is the combined uncertainty of the comparison and the reference standard for SI traceability of ISAR radiometer SSTskin records used for satellite SST validation. Applications of the CASOTS-II blackbody to monitor the calibration of shipborne radiometers are described and measurement protocols are proposed.

Denotes Open Access content.

Corresponding author address: Craig J. Donlon, European Space Agency, Keplerlaan 1, 2201 AG Noordwijk, Netherlands. E-mail: craig.donlon@esa.int

Abstract

Quasi-operational shipborne radiometers provide a fiducial reference measurement (FRM) for satellite validation of satellite sea surface skin temperature (SSTskin) retrievals. External reference blackbodies are required to verify the performance and to quantify the accuracy of the radiometer calibration system. They provide a link in an unbroken chain of comparisons between the shipborne radiometer and a traceable reference standard. A second-generation water bath blackbody reference radiance source has been developed for this purpose. The second generation Concerted Action for the Study of the Ocean Thermal Skin (CASOTS-II) blackbody has a 110-mm-diameter aperture cylinder-cone geometry coated with NEXTEL suede 3103 paint. Interchangeable aperture stops reduce the cavity aperture diameter and minimize stray radiation. Monte Carlo modeling techniques show the effective emissivity of the cavity to be >0.9999 (aperture < 30 mm). The cavity is immersed in a water bath that is vigorously stirred using a pump that slowly heats the water bath at a mean rate of ~0.6 K h−1. The temperature of the water bath is measured using a thermometer traceable to the International System of Units (SI) standards. The worst-case radiance temperature of the CASOTS-II blackbody system is traceable to the SI with an uncertainty of 58 mK (millikelvin). When operating under typical laboratory conditions using an aperture of 40 mm, the uncertainty is 16 mK. An intercomparison with the U.K. National Physical Laboratory Absolute Measurements of Blackbody Emitted Radiance (AMBER) reference radiometer found no significant differences within 75 mK (110-mm aperture) or 50 mK (40-mm aperture), which is the combined uncertainty of the comparison and the reference standard for SI traceability of ISAR radiometer SSTskin records used for satellite SST validation. Applications of the CASOTS-II blackbody to monitor the calibration of shipborne radiometers are described and measurement protocols are proposed.

Denotes Open Access content.

Corresponding author address: Craig J. Donlon, European Space Agency, Keplerlaan 1, 2201 AG Noordwijk, Netherlands. E-mail: craig.donlon@esa.int
Save