• Baker, M. A., and Gibson C. H. , 1987: Sampling turbulence in the stratified ocean: Statistical consequences of strong intermittency. J. Phys. Oceanogr., 17, 18171836, doi:10.1175/1520-0485(1987)017<1817:STITSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beaird, N., Fer I. , Rhines P. , and Eriksen C. , 2012: Dissipation of turbulent kinetic energy inferred from Seagliders: An application to the eastern Nordic seas overflows. J. Phys. Oceanogr., 42, 22682282, doi:10.1175/JPO-D-12-094.1.

    • Search Google Scholar
    • Export Citation
  • Darelius, E., Fer I. , and Quadfasel D. , 2011: Faroe Bank Channel overflow: Mesoscale variability. J. Phys. Oceanogr., 41, 21372154, doi:10.1175/JPO-D-11-035.1.

    • Search Google Scholar
    • Export Citation
  • Darelius, E., Ullgren J. E. , and Fer I. , 2013: Observations of barotropic oscillations and their influence on mixing in the Faroe Bank Channel overflow region. J. Phys. Oceanogr., 43, 15251532, doi:10.1175/JPO-D-13-059.1.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., Eriksen C. C. , and Jones C. P. , 2003: Autonomous buoyancy-driven underwater gliders. Technology and Applications of Autonomous Underwater Vehicles, G. Griffiths, Ed., Taylor and Francis, 37–58.

  • Dillon, T. M., Barth J. A. , Erofeev A. Y. , May G. H. , and Wijesekera H. W. , 2003: MicroSoar: A new instrument for measuring microscale turbulence from rapidly moving submerged platforms. J. Atmos. Oceanic Technol., 20, 16711684, doi:10.1175/1520-0426(2003)020<1671:MANIFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fer, I., Voet G. , Seim K. S. , Rudels B. , and Latarius K. , 2010: Intense mixing of the Faroe Bank Channel overflow. Geophys. Res. Lett., 37, L02604, doi:10.1029/2009GL041924.

    • Search Google Scholar
    • Export Citation
  • Gibson, C. H., 1987: Fossil turbulence and intermittency in sampling oceanic mixing processes. J. Geophys. Res., 92, 53835404, doi:10.1029/JC092iC05p05383.

    • Search Google Scholar
    • Export Citation
  • Goodman, L., Levine E. R. , and Lueck R. G. , 2006: On measuring the terms of the turbulent kinetic energy budget from an AUV. J. Atmos. Oceanic Technol., 23, 977990, doi:10.1175/JTECH1889.1.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., Seim H. E. , and Percival D. B. , 1993: Statistics of shear and turbulent dissipation profiles in random internal wave fields. J. Phys. Oceanogr., 23, 17771799, doi:10.1175/1520-0485(1993)023<1777:SOSATD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Høyer, J. L., and Quadfasel D. , 2001: Detection of deep overflows with satellite altimetry. Geophys. Res. Lett., 28, 16111614, doi:10.1029/2000GL012549.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., Rudnick D. L. , Carter G. S. , Todd R. E. , and Cole S. T. , 2011: Internal tidal beams and mixing near Monterey Bay. J. Geophys. Res., 116, C03017, doi:10.1029/2010JC006592.

    • Search Google Scholar
    • Export Citation
  • Jones, C., Creed E. , Glenn S. , Kerfoot J. , Kohut J. , Mugdal C. , and Schofield O. , 2005: Slocum gliders—A component of operational oceanography. Proc. 14th Int. Symp. on Unmanned Untethered Submersible Technology, CD-ROM, Durham, NH, Autonomous Undersea Systems Institute, 10 pp.

  • L’Heveder, B., Mortier L. , Testor P. , and Lekien F. , 2013: A glider network design study for a synoptic view of the oceanic mesoscale variability. J. Atmos. Oceanic Technol., 30, 1472–1493, doi:10.1175/JTECH-D-12-00053.1.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and Coauthors, 2009: Improving oceanic overflow representation in climate models: The Gravity Current Entrainment Climate Process Team. Bull. Amer. Meteor. Soc., 90, 657670, doi:10.1175/2008BAMS2667.1.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., Wolk F. , and Yamazaki H. , 2002: Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr., 58, 153174, doi:10.1023/A:1015837020019.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., Alford M. H. , Pinkel R. , Klymak J. , and Zhao Z. , 2013: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, doi:10.1175/JPO-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • Macoun, P., and Lueck R. G. , 2004: Modeling the spatial response of the airfoil shear probe using different sized probes. J. Atmos. Oceanic Technol., 21, 284297, doi:10.1175/1520-0426(2004)021<0284:MTSROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merckelbach, L., Smeed D. , and Griffiths G. , 2010: Vertical water velocities from underwater gliders. J. Atmos. Oceanic Technol., 27, 547563, doi:10.1175/2009JTECHO710.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., Gregg M. C. , Lien R. C. , and Carr M. E. , 1995: Comparison of turbulent kinetic energy dissipation rate estimates from two ocean microstructure profilers. J. Atmos. Oceanic Technol., 12, 346366, doi:10.1175/1520-0426(1995)012<0346:COTKED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mudge, T. D., and Lueck R. G. , 1994: Digital signal processing to enhance oceanographic observations. J. Atmos. Oceanic Technol., 11, 825836, doi:10.1175/1520-0426(1994)011<0825:DSPTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nasmyth, P. W., 1970: Ocean turbulence. Ph.D. thesis, University of British Columbia, 106 pp.

  • Osborn, T. D., and Lueck R. G. , 1985: Turbulence measurements from a submarine. J. Phys. Oceanogr., 15, 15021520, doi:10.1175/1520-0485(1985)015<1502:TMWAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ott, M. W., Barth J. A. , and Erofeev A. Y. , 2004: Microstructure measurements from a towed undulating platform. J. Atmos. Oceanic Technol., 21, 16211632, doi:10.1175/1520-0426(2004)021<1621:MMFATU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., Davis R. E. , Eriksen C. C. , Fratantoni D. M. , and Perry M. J. , 2004: Underwater gliders for ocean research. Mar. Technol. Soc. J., 38, 7384, doi:10.4031/002533204787522703.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., Johnston T. M. S. , and Sherman J. T. , 2013: High-frequency internal waves near the Luzon Strait observed by underwater gliders. J. Geophys. Res., 118, 774784, doi:10.1002/jgrc.20083.

    • Search Google Scholar
    • Export Citation
  • Seim, K. S., and Fer I. , 2011: Mixing in the stratified interface of the Faroe Bank Channel overfow: The role of transverse circulation and internal waves. J. Geophys. Res., 116, C07022, doi:10.1029/2010JC006805.

    • Search Google Scholar
    • Export Citation
  • Simonsen, K., Larsen K. M. H. , Mortensen L. , and Norbye A. M. , 2002: A new bathymetry for the Faroe shelf. Tech. Rep. 2002-07, University of the Faroe Islands, 9 pp.

  • Smith, D. K., and Sandwell D. , 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and Thorpe S. A. , 2012: Glider measurements of overturning in a Kelvin–Helmholtz billow train. J. Mar. Res., 70, 119140, doi:10.1357/002224012800502381.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2012: Measuring overturns with gliders. J. Mar. Res., 70, 93117, doi:10.1357/002224012800502417.

  • Ullgren, J. E., Fer I. , Darelius E. , and Beaird N. , 2014: Interaction of the Faroe Bank Channel overflow with Iceland Basin intermediate waters. J. Geophys. Res. Oceans, 119, 228240, doi:10.1002/2013JC009437.

    • Search Google Scholar
    • Export Citation
  • Wolk, F., Yamazaki H. , Seuront L. , and Lueck R. G. , 2002: A new free-fall profiler for measuring biological microstructure. J. Atmos. Oceanic Technol., 19, 780793, doi:10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolk, F., Lueck R. G. , and St. Laurent L. C. , 2009: Turbulence measurements from a glider. Proc. OCEANS ʼ09, Biloxi, MS, MTS/IEEE, 6 pp. [Available online at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5422413&isnumber=5422059.]

  • Wyngaard, J. C., Rockwell L. , and Friehe C. A. , 1985: Errors in the measurement of turbulence upstream of an axisymmetric body. J. Atmos. Oceanic Technol., 2, 605614, doi:10.1175/1520-0426(1985)002<0605:EITMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, H., Lueck R. G. , and Osborn T. , 1990: A comparison of turbulence data from a submarine and a vertical profiler. J. Phys. Oceanogr., 20, 17781786, doi:10.1175/1520-0485(1990)020<1778:ACOTDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 429 258 1
PDF Downloads 346 196 1

Microstructure Measurements from an Underwater Glider in the Turbulent Faroe Bank Channel Overflow

View More View Less
  • 1 Geophysical Institute, University of Bergen, Bergen, Norway
Restricted access

Abstract

Measurements of ocean microstructure are made in the turbulent Faroe Bank Channel overflow using a turbulence instrument attached to an underwater glider. Dissipation rate of turbulent kinetic energy ε is measured using airfoil shear probes. A comparison is made between 152 profiles from dive and climb cycles of the glider during a 1-week mission in June 2012 and 90 profiles collected from the ship using a vertical microstructure profiler (VMP). Approximately one-half of the profiles are collocated. For 96% of the dataset, measurements are of high quality with no systematic differences between dives and climbs. The noise level is less than 5 × 10−11 W kg−1, comparable to the best microstructure profilers. The shear probe data are contaminated and unreliable at the turning depth of the glider and for U/ut < 20, where U is the flow past the sensor, ut = (ε/N)1/2 is an estimate of the turbulent velocity scale, and N is the buoyancy frequency. Averaged profiles of ε from the VMP and the glider agree to better than a factor of 2 in the turbulent bottom layer of the overflow plume, and beneath the stratified and sheared plume–ambient interface. The glider average values are approximately a factor of 3 and 9 times larger than the VMP values in the layers defined by the isotherms 3°–6° and 6°–9°C, respectively, corresponding to the upper part of the interface and above. The discrepancy is attributed to a different sampling scheme and the intermittency of turbulence. The glider offers a noise-free platform suitable for ocean microstructure measurements.

Denotes Open Access content.

Corresponding author address: Ilker Fer, Geophysical Institute, University of Bergen, Allégaten 70, 5007 Bergen, Norway. E-mail: ilker.fer@gfi.uib.no

Abstract

Measurements of ocean microstructure are made in the turbulent Faroe Bank Channel overflow using a turbulence instrument attached to an underwater glider. Dissipation rate of turbulent kinetic energy ε is measured using airfoil shear probes. A comparison is made between 152 profiles from dive and climb cycles of the glider during a 1-week mission in June 2012 and 90 profiles collected from the ship using a vertical microstructure profiler (VMP). Approximately one-half of the profiles are collocated. For 96% of the dataset, measurements are of high quality with no systematic differences between dives and climbs. The noise level is less than 5 × 10−11 W kg−1, comparable to the best microstructure profilers. The shear probe data are contaminated and unreliable at the turning depth of the glider and for U/ut < 20, where U is the flow past the sensor, ut = (ε/N)1/2 is an estimate of the turbulent velocity scale, and N is the buoyancy frequency. Averaged profiles of ε from the VMP and the glider agree to better than a factor of 2 in the turbulent bottom layer of the overflow plume, and beneath the stratified and sheared plume–ambient interface. The glider average values are approximately a factor of 3 and 9 times larger than the VMP values in the layers defined by the isotherms 3°–6° and 6°–9°C, respectively, corresponding to the upper part of the interface and above. The discrepancy is attributed to a different sampling scheme and the intermittency of turbulence. The glider offers a noise-free platform suitable for ocean microstructure measurements.

Denotes Open Access content.

Corresponding author address: Ilker Fer, Geophysical Institute, University of Bergen, Allégaten 70, 5007 Bergen, Norway. E-mail: ilker.fer@gfi.uib.no
Save