• AVISO, 2013: SSALTO/DUACS user handbook: (M)SLA and (M)ADT near-real time and delayed time products. SALP-MU-P-EA-21065-CLS, 2nd ed. AVISO, 70 pp. [Available online at http://www.aviso.altimetry.fr/en/data/product-information/aviso-user-handbooks.html.].

  • Barton, E. D., Arístegui J. , Tett P. , and Navarro-Pérez E. , 2004: Variability in the Canary Islands area of filament-eddy exchanges. Prog. Oceanogr., 62, 7194, doi:10.1016/j.pocean.2004.07.003.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., Wang Y. , Olascoaga M. J. , Goni G. J. , and Haller G. , 2013: Objective detection of oceanic eddies and the Agulhas leakage. J. Phys. Oceanogr., 43, 14261438, doi:10.1175/JPO-D-12-0171.1.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., Gizolme A. , and Grados C. , 2008: Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79, 106119, doi:10.1016/j.pocean.2008.10.013.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., Schlax M. G. , Samelson R. M. , and de Szoeke R. A. , 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., Gaube P. , Schlax M. A. , Early J. A. , and Samelson R. M. , 2011a: The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334, 6054, 328332, doi:10.1126/science.1208897.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., Schlax M. A. , and Samelson R. M. , 2011b: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Doglioli, A. M., Blanke B. , Speich S. , and Lapeyre G. , 2007: Tracking coherent structures in a regional ocean model with wavelet analysis: Application to cape basin eddies. J. Geophys. Res., 112, C05043, doi:10.1029/2006JC003952.

    • Search Google Scholar
    • Export Citation
  • Early, J. A., Samelson R. M. , and Chelton D. B. , 2011: The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr., 41, 15351555, doi:10.1175/2011JPO4601.1.

    • Search Google Scholar
    • Export Citation
  • Gruber, N., Lachkar Z. , Frenzel H. , Marchesiello P. , Münnich M. , McWilliams J. C. , Nagai T. , and Plattner G.-K. , 2011: Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci., 4, 787792, doi:10.1038/ngeo1273.

    • Search Google Scholar
    • Export Citation
  • Halo, I., Backeburg B. , Penven P. , Ansorge I. , Reason C. , and Ullgren J. E. , 2014: Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models. Deep-Sea Res. II, 100, 38–53, doi:10.1016/j.dsr2.2013.10.015.

    • Search Google Scholar
    • Export Citation
  • Hunter, J. D., 2007: Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9, 9095, doi:10.1109/MCSE.2007.55.

  • Isern-Fontanet, J., García-Ladona E. , and Font J. , 2003: Identification of marine eddies from altimetric maps. J. Atmos. Oceanic Technol., 20, 772778, doi:10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurian, J., Colas F. , Capet X. J. , McWilliams J. C. , and Chelton D. B. , 2011: Eddy properties in the California Current System. J. Geophys. Res., 116, C08027, doi:10.1029/2010JC006895.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2008: The nature and consequences of oceanic eddies. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 5–15, doi:10.1029/177GM03.

  • Morrow, R., Birol F. , Griffin D. , and Sudre J. , 2004: Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys. Res. Lett., 31, L24311, doi:10.1029/2004GL020974.

    • Search Google Scholar
    • Export Citation
  • Nencioli, F., Dong C. , Dickey T. D. , Washburn L. , and McWilliams J. C. , 2010: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27, 564579, doi:10.1175/2009JTECHO725.1.

    • Search Google Scholar
    • Export Citation
  • Neu, R., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, doi:10.1175/BAMS-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • Oliphant, T. E., 2007: Python for scientific computing. Comput. Sci. Eng., 9, 10, doi:10.1109/MCSE.2007.58.

  • Pascual, A., Faugère Y. , Larnicol G. , and Le Traon P.-Y. , 2006: Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett., 33, L02611, doi:10.1029/2005GL024633.

    • Search Google Scholar
    • Export Citation
  • Penven, P., Echevin V. , Pasapera J. , Colas F. , and Tam J. , 2005: Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. J. Geophys. Res., 110, C10021, doi:10.1029/2005JC002945.

    • Search Google Scholar
    • Export Citation
  • Rubio, A., Blanke B. , Speich S. , Grima N. , and Roy C. , 2009: Mesoscale eddy activity in the southern Benguela upwelling system from satellite altimetry and model data. Prog. Oceanogr., 83, 288295, doi:10.1016/j.pocean.2009.07.029.

    • Search Google Scholar
    • Export Citation
  • Sangrà, P., and Coauthors, 2009: The Canary Eddy Corridor: A major pathway for long-lived eddies in the subtropical North Atlantic. Deep-Sea Res. I, 56, 21002114, doi:10.1016/j.dsr.2009.08.008.

    • Search Google Scholar
    • Export Citation
  • Souza, J. M. A. C., de Boyer Montégut C. , and Le Traon P.-Y. , 2011: Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Sci., 7, 317334, doi:10.5194/os-7-317-2011.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, doi:10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28, 727739, doi:10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., Bange H. W. , Czeschel R. , Lorenzo A. , and Frank M. , 2013: On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru. Biogeosci. Discuss., 10, 91799211, doi:10.5194/bgd-10-9179-2013.

    • Search Google Scholar
    • Export Citation
  • Ubelmann, C., and Fu L.-L. , 2011: Vorticity structures in the tropical Pacific from a numerical simulation. J. Phys. Oceanogr., 41, 14551464, doi:10.1175/2011JPO4507.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2848 1558 7
PDF Downloads 2364 1218 3

A New Sea Surface Height–Based Code for Oceanic Mesoscale Eddy Tracking

View More View Less
  • 1 Instituto Mediterráneo de Estudios Avanzados, Consejo Superior de Investigaciones Científicas, University of the Balearic Islands, Esporles, Illes Balears, Spain
  • | 2 Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California
Restricted access

Abstract

This paper presents a software tool that enables the identification and automated tracking of oceanic eddies observed with satellite altimetry in user-specified regions throughout the global ocean. As input, the code requires sequential maps of sea level anomalies such as those provided by Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) data. Outputs take the form of (i) data files containing eddy properties, including position, radius, amplitude, and azimuthal (geostrophic) speed; and (ii) sequential image maps showing sea surface height maps with active eddy centers and tracks overlaid. The results given are from a demonstration in the Canary Basin region of the northeast Atlantic and are comparable with a published global eddy track database. Some discrepancies between the two datasets include eddy radius magnitude, and the distributions of eddy births and deaths. The discrepancies may be related to differences in the eddy identification methods, and also possibly to differences in the smoothing of the sea surface height maps. The code is written in Python and is made freely available under a GNU license (http://www.imedea.uib.es/users/emason/py-eddy-tracker/).

Corresponding author address: E. Mason, IMEDEA, CSIC–UIB, C./Miquel Marquès 21, Esporles 07190, Islas Baleares, Spain. E-mail: emason@imedea.uib-csic.es

Abstract

This paper presents a software tool that enables the identification and automated tracking of oceanic eddies observed with satellite altimetry in user-specified regions throughout the global ocean. As input, the code requires sequential maps of sea level anomalies such as those provided by Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) data. Outputs take the form of (i) data files containing eddy properties, including position, radius, amplitude, and azimuthal (geostrophic) speed; and (ii) sequential image maps showing sea surface height maps with active eddy centers and tracks overlaid. The results given are from a demonstration in the Canary Basin region of the northeast Atlantic and are comparable with a published global eddy track database. Some discrepancies between the two datasets include eddy radius magnitude, and the distributions of eddy births and deaths. The discrepancies may be related to differences in the eddy identification methods, and also possibly to differences in the smoothing of the sea surface height maps. The code is written in Python and is made freely available under a GNU license (http://www.imedea.uib.es/users/emason/py-eddy-tracker/).

Corresponding author address: E. Mason, IMEDEA, CSIC–UIB, C./Miquel Marquès 21, Esporles 07190, Islas Baleares, Spain. E-mail: emason@imedea.uib-csic.es
Save