A Dual-Polarization Radar Hydrometeor Classification Algorithm for Winter Precipitation

Elizabeth J. Thompson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Elizabeth J. Thompson in
Current site
Google Scholar
PubMed
Close
,
Steven A. Rutledge Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven A. Rutledge in
Current site
Google Scholar
PubMed
Close
,
Brenda Dolan Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Brenda Dolan in
Current site
Google Scholar
PubMed
Close
,
V. Chandrasekar Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by V. Chandrasekar in
Current site
Google Scholar
PubMed
Close
, and
Boon Leng Cheong Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Boon Leng Cheong in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The purpose of this study is to demonstrate the use of polarimetric observations in a radar-based winter hydrometeor classification algorithm. This is accomplished by deriving bulk electromagnetic scattering properties of stratiform, cold-season rain, freezing rain, sleet, dry aggregated snowflakes, dendritic snow crystals, and platelike snow crystals at X-, C-, and S-band wavelengths based on microphysical theory and previous observational studies. These results are then used to define the expected value ranges, or membership beta functions, of a simple fuzzy-logic hydrometeor classification algorithm. To test the algorithm’s validity and robustness, polarimetric radar data and algorithm output from four unique winter storms are investigated alongside surface observations and thermodynamic soundings. This analysis supports that the algorithm is able to realistically discern regions dominated by wet snow, aggregates, plates, dendrites, and other small ice crystals based solely on polarimetric data, with guidance from a melting-level detection algorithm but without external temperature information. Temperature is still used to distinguish rain from freezing rain or sleet below the radar-detected melting level. After appropriate data quality control, little modification of the algorithm was required to produce physically reasonable results on four different radar platforms at X, C, and S bands. However, classification seemed more robust at shorter wavelengths because the specific differential phase is heavily weighted in ice crystal classification decisions. It is suggested that parts, or all, of this algorithm could be applicable in both operational and research settings.

Corresponding author address: Elizabeth J. Thompson, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: liz@atmos.colostate.edu

Abstract

The purpose of this study is to demonstrate the use of polarimetric observations in a radar-based winter hydrometeor classification algorithm. This is accomplished by deriving bulk electromagnetic scattering properties of stratiform, cold-season rain, freezing rain, sleet, dry aggregated snowflakes, dendritic snow crystals, and platelike snow crystals at X-, C-, and S-band wavelengths based on microphysical theory and previous observational studies. These results are then used to define the expected value ranges, or membership beta functions, of a simple fuzzy-logic hydrometeor classification algorithm. To test the algorithm’s validity and robustness, polarimetric radar data and algorithm output from four unique winter storms are investigated alongside surface observations and thermodynamic soundings. This analysis supports that the algorithm is able to realistically discern regions dominated by wet snow, aggregates, plates, dendrites, and other small ice crystals based solely on polarimetric data, with guidance from a melting-level detection algorithm but without external temperature information. Temperature is still used to distinguish rain from freezing rain or sleet below the radar-detected melting level. After appropriate data quality control, little modification of the algorithm was required to produce physically reasonable results on four different radar platforms at X, C, and S bands. However, classification seemed more robust at shorter wavelengths because the specific differential phase is heavily weighted in ice crystal classification decisions. It is suggested that parts, or all, of this algorithm could be applicable in both operational and research settings.

Corresponding author address: Elizabeth J. Thompson, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: liz@atmos.colostate.edu
Save
  • Andrić, J., Kumjian M. R. , Zrnić D. S. , Straka J. M. , and Melnikov V. M. , 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • Andsager, K., Beard K. V. , and Laird N. F. , 1999: Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56, 26732683, doi:10.1175/1520-0469(1999)056<2673:LMOARF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1953: Scattering and attenuation by non-spherical atmospheric particles. J. Atmos. Terr. Phys., 3, 108119, doi:10.1016/0021-9169(53)90093-2.

    • Search Google Scholar
    • Export Citation
  • Auer, A., and Veal D. , 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, doi:10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bader, M. J., Clough S. , and Cox G. , 1987: Aircraft and dual-polarization radar observations of hydrometeors in light stratiform precipitation. Quart. J. Roy. Meteor. Soc., 113, 491515, doi:10.1002/qj.49711347605.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and Zrnić D. S. , 1990: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, doi:10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barber, P., and Yeh C. , 1975: Scattering of electromagnetic waves by arbitrary shaped dielectric bodies. Appl. Opt., 14, 28641872, doi:10.1364/AO.14.002864.

    • Search Google Scholar
    • Export Citation
  • Barthazy, E., Henrich W. , and Waldvogel A. , 1988: Size distribution of hydrometeors through the melting layer. Atmos. Res., 47, 193208, doi:10.1016/S0169-8095(98)00065-9.

    • Search Google Scholar
    • Export Citation
  • Beard, K., and Jameson A. , 1983: Raindrop canting. J. Atmos. Sci., 40, 448454, doi:10.1175/1520-0469(1983)040<0448:RC>2.0.CO;2.

  • Beard, K., and Chuang C. , 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 15091524, doi:10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., Baldini L. , and Chandrasekar V. , 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, doi:10.1175/JAMC-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Boodoo, S., Hudak D. , Donaldson N. , and Leduc M. , 2010: Application of dual-polarization radar melting-layer detection algorithm. J. Appl. Meteor. Climatol., 49, 17791793, doi:10.1175/2010JAMC2421.1.

    • Search Google Scholar
    • Export Citation
  • Botta, G., Aydin K. , and Verlinde J. , 2010: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: A new approach. IEEE Trans. Geosci. Remote Sens., 7, 572576, doi:10.1109/LGRS.2010.2041633.

    • Search Google Scholar
    • Export Citation
  • Boucher, R. J., and Wieler J. G. , 1985: Radar determination of snowfall rate and accumulation. J. Climate Appl. Meteor., 24, 6873, doi:10.1175/1520-0450(1985)024<0068:RDOSRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., and Ikeda K. , 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 15411553, doi:10.1175/JAM2155.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications.Cambridge University Press, 636 pp.

  • Bringi, V. N., Chandrasekhar V. , Hubbert J. , Gorgucci E. , Randeu W. L. , and Schoenhuber M. , 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, doi:10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brunkow, D., Bringi V. N. , Kennedy P. C. , Rutledge S. A. , Chandrasekar V. , Mueller E. A. , and Bowie R. K. , 2000: A description of the CSU–CHILL National Radar Facility. J. Atmos. Oceanic Technol., 17, 1596–1608, doi:10.1175/1520-0426(2000)017<1596:ADOTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Kernen R. , Lim S. , and Moisseev D. , 2013: Recent advances in classification of observations from dual-polarization weather radars. Atmos. Res., 119, 97111, doi:10.1016/j.atmosres.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., Bernstein B. C. , Robbins C. C. , and Strapp J. W. , 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, doi:10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., Bryan G. H. , and van den Heever S. C. , 2011: Storm and Cloud Dynamics.2nd ed. Academic Press, 809 pp.

  • Dolan, B., and Rutledge S. A. , 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, doi:10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., Rutledge S. A. , Lim S. , Chandrasekar V. , and Thurai M. , 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52, 21622186, doi:10.1175/JAMC-D-12-0275.1.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., 2011: The NSSL hydrometeor classification algorithm in winter surface precipitation: Evaluation and future development. Wea. Forecasting, 26, 756765, doi:10.1175/WAF-D-10-05011.1.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., and Vivekanandan J. , 1990: Multiparameter radar and microwave radiative transfer modeling of nonspherical atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 28, 423437, doi:10.1109/TGRS.1990.572908.

    • Search Google Scholar
    • Export Citation
  • Foster, T. C., and Hallett J. , 2008: Enhanced alignment of plate ice crystals in a non-uniform electric field. Atmos. Res., 90, 4153, doi:10.1016/j.atmosres.2008.02.017.

    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., 1986: Melting snowflakes. J. Atmos. Sci., 43, 307311, doi:10.1175/1520-0469(1986)043<0307:MS>2.0.CO;2.

  • Fujiyoshi, Y., and Wakahama G. , 1985: On snow particles comprising an aggregate. J. Atmos. Sci., 42, 16671674, doi:10.1175/1520-0469(1985)042<1667:OSPCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and Takahashi T. , 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, doi:10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., Krause J. M. , and Ryzhkov A. V. , 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol., 47, 13541364, doi:10.1175/2007JAMC1634.1.

    • Search Google Scholar
    • Export Citation
  • Gibson, S. R., and Stewart R. E. , 2007: Observations of ice pellets during a winter storm. Atmos. Res., 85, 6476, doi:10.1016/j.atmosres.2006.11.004.

    • Search Google Scholar
    • Export Citation
  • Gibson, S. R., Stewart R. E. , and Henson W. , 2009: On the variation of ice pellet characteristics. J. Geophys. Res.,114, D09207, doi:10.1029/2008JD011260.

  • Hendry, A., McCormick G. C. , and Barge B. L. , 1976: The degree of common orientation of hydrometeors observed by polarization diversity radars. J. Appl. Meteor., 15, 633640, doi:10.1175/1520-0450(1976)015<0633:TDOCOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and Jameson A. R. , 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651374, doi:10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1972: Ice crystal terminal velocities. J. Atmos. Sci., 29, 13481357, doi:10.1175/1520-0469(1972)029<1348:ICTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Bansemer A. , Schmitt C. , Twohy C. , and Poellot M. R. , 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, doi:10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Illingworth A. J. , and Sauvageot H. , 2000: Measuring crystal size in cirrus using 35- and 94-GHz radars. J. Atmos. Oceanic Technol., 17, 2737, doi:10.1175/1520-0426(2000)017<0027:MCSICU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Tian L. , Brown P. R. A. , Westbrook C. D. , Heymsfield A. J. , and Eastment J. D. , 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, doi:10.1175/JAMC-D-11-074.1.

    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., Bringi V. N. , and Thurai M. , 2008: Orientation angle distributions of drops after an 80-m fall using a 2D video disdrometer. J. Atmos. Oceanic Technol., 25, 17171723, doi:10.1175/2008JTECHA1075.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Caylor I. J. , 1989: Polarization radar estimates of raindrop size spectra and rainfall rates. J. Atmos. Oceanic Technol., 6, 939949, doi:10.1175/1520-0426(1989)006<0939:PREORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., Goddard J. W. F. , and Cherry S. M. , 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, doi:10.1002/qj.49711347604.

    • Search Google Scholar
    • Export Citation
  • Jiusto, J. E., and Weickmann H. K. , 1973: Types of snowfall. Bull. Amer. Meteor. Soc., 54, 11481162, doi:10.1175/1520-0477(1973)054<1148:TOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Junyent, F., Chandrasekar V. , McLaughlin D. , Insanic E. , and Bharadwaj N. , 2010: The CASA Integrated Project 1 networked radar system. J. Atmos. Oceanic Technol., 27, 6178, doi:10.1175/2009JTECHA1296.1.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1982: Observations of the falling motion of early snowflakes. Part I: Relationship between the free-fall pattern and the number and shape of component snow crystals. J. Meteor. Soc. Japan, 60, 797803.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and Rutledge S. A. , 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., Rutledge S. A. , Petersen W. A. , and Bringi V. N. , 2001: Polarimetric radar observations of hail formation. J. Appl. Meteor., 40, 13471366, doi:10.1175/1520-0450(2001)040<1347:PROOHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., 1979: Observations of the morphology of melting snow. J. Atmos. Sci., 36, 11231130.

  • Knight, C. A., and Knight N. C. , 1970: The falling behavior of hailstones. J. Atmos. Sci., 27, 672681, doi:10.1175/1520-0469(1970)027<0672:TFBOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kouketsu, T., and Uyeda H. , 2010: Validation of hydrometeor classification method for X-band polarimetric radar—Comparison with ground observation of solid hydrometeor. Proc. Sixth European Conf. on Radar in Meteorology and Hydrology, Sibiu, Romania, ERAD, 261. [Available online at http://www.erad2010.org/pdf/POSTER/Thursday/02_Xband/09_ERAD2010_0261_Extended.pdf.]

  • Kringlebotn Nygaard, K. E., Egil B. , Kristjnsson J. E. , and Makkonen L. , 2011: Prediction of in-cloud icing conditions at ground level using the WRF model. J. Appl. Meteor. Climatol., 50, 24452459, doi:10.1175/JAMC-D-11-054.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Ganson S. M. , and Ryzhkov A. V. , 2012: Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490, doi:10.1175/JAS-D-12-067.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Ryzhkov A. V. , Reeves H. D. , and Schuur T. J. , 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, doi:10.1175/JAMC-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
  • Lautaportti, S., Moisseev D. , Saavedra P. , Battaglia A. , and Chandrasekar V. , 2012: C-band dual-polarization radar and microwave radiometer observations of winter precipitation during LPVEx. Proc. Seventh European Conf. on Radar in Meteorology and Hydrology, Toulouse, France, ERAD, 77 MIC. [Available online at http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/MIC_201_ext_abs.pdf.]

  • Liu, H., and Chandrasekar V. , 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, doi:10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and Passarelli R. E. , 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697706, doi:10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and Hobbs P. V. , 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Reinking R. F. , and Djalalova I. V. , 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, doi:10.1175/JAS-3356.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Cifelli R. , Kennedy P. C. , Nesbitt S. W. , Rutledge S. A. , Bringi V. N. , and Martner B. E. , 2006: A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S-band radar frequencies. J. Atmos. Oceanic Technol., 23, 952963, doi:10.1175/JTECH1887.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Mace G. G. , Marchand R. , Shupe M. D. , Hallar A. G. , and McCubbin I. B. , 2012: Observations of ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratio mode. J. Atmos. Oceanic Technol., 29, 9891008, doi:10.1175/JTECH-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817, doi:10.1175/2009BAMS2507.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mosimann, L., 1995: An improved method for determining the degree of snow crystal riming by vertical Doppler radar. Atmos. Res., 37, 305323, doi:10.1016/0169-8095(94)00050-N.

    • Search Google Scholar
    • Export Citation
  • Ohtake, T., and Henmi T. , 1970: Radar reflectivity of aggregated snowflakes. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 209–210.

  • Palmer, R. D., and Coauthors, 2011: Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891, doi:10.1175/2011BAMS3125.1.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., Ryzhkov A. V. , Zrnić D. S. , and Kim K.-E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and Pitter R. L. , 1971: A semi-empirical determination of the shape of cloud and rain drops. J. Atmos. Sci., 28, 8694, doi:10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and Klett J. D. , 1997: Microphysics of Clouds and Precipitation.2nd ed. Kluwer Academic Publishers, 954 pp.

  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632, doi:10.1175/BAMS-86-11-1619.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Tokay A. , 1991: An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci., 48, 10051023, doi:10.1175/1520-0469(1991)048<1005:AEFTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., Olthoff L. S. , Ramamurthy M. K. , and Kunkel K. E. , 2001: Further investigation of a physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea. Forecasting, 16, 185191, doi:10.1175/1520-0434(2001)016<0185:FIOAPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reinking, R., 1975: Formation of graupel. J. Appl. Meteor., 14, 745754, doi:10.1175/1520-0450(1975)014<0745:FOG>2.0.CO;2.

  • Ryan, B. F., 2000: A bulk parameterization of the ice particle size distribution and the optical properties in ice clouds. J. Atmos. Sci., 57, 14361451, doi:10.1175/1520-0469(2000)057<1436:ABPOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2001: Interpretation of polarimetric radar covariance matrix for meteorological scatterers: Theoretical analysis. J. Atmos. Oceanic Technol., 18, 315328, doi:10.1175/1520-0426(2001)018<0315:IOPRCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, doi:10.1175/JTECH2003.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and Zrnić D. S. , 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240, doi:10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Zrnić D. S. , and Gordon B. A. , 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134, doi:10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Giangrande S. E. , Melnikov V. M. , and Schuur T. J. , 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, doi:10.1175/JTECH1772.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Schuur T. J. , Burgess D. W. , Heinselman P. L. , Giangrande S. E. , and Zrnić D. S. , 2005b: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., Park H.-S. , Ryzhkov A. V. , and Reeves H. D. , 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779, doi:10.1175/JAMC-D-11-091.1.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Minnis P. , Fleeger C. , Spangenberg D. , Palikonda R. , and Nguyen L. , 2012: Determining the flight icing threat to aircraft with single-layer cloud parameters derived from operational satellite data. J. Appl. Meteor. Climatol., 51, 17941810, doi:10.1175/JAMC-D-12-057.1.

    • Search Google Scholar
    • Export Citation
  • Spek, A. L. J., Unal C. M. H. , Moisseev D. N. , Russchenberg H. W. J. , Chandrasekar V. , and Dufournet Y. , 2008: A new technique to categorize and retrieve the microphysical properties of ice particles above the melting layer using radar dual-polarization spectral analysis. J. Atmos. Oceanic Technol., 25, 482497, doi:10.1175/2007JTECHA944.1.

    • Search Google Scholar
    • Export Citation
  • Spengler, J. D., and Gokhale N. R. , 1972: Freezing of freely suspended, supercooled water drops in a large vertical wind tunnel. J. Appl. Meteor., 11, 11011107, doi:10.1175/1520-0450(1972)011<1101:FOFSSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., 1992: Precipitation types in the transition region of winter storms. Bull. Amer. Meteor. Soc., 73, 287296, doi:10.1175/1520-0477(1992)073<0287:PTITTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., Marwitz J. D. , Pace J. C. , and Carbone R. E. , 1984: Characteristics through the melting layer of stratiform clouds. Mon. Wea. Rev., 41, 32273237, doi:10.1175/1520-0469(1984)041<3227:CTTMLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., Lin C. A. , and Macpherson S. R. , 1990: The structure of a winter storm producing heavy precipitation over Nova Scotia. Mon. Wea. Rev., 118, 411426, doi:10.1175/1520-0493(1990)118<0411:TSOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., Zrnić D. S. , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Fukuta N. , 1988: Observations of the embryos of graupel. J. Atmos. Sci., 45, 32883297, doi:10.1175/1520-0469(1988)045<3288:OOTEOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., Tajiri T. , and Sonoi Y. , 1999: Charges on graupel and snow crystals and the electrical structure of winter thunderstorms. J. Atmos. Sci., 56, 15611578, doi:10.1175/1520-0469(1999)056<1561:COGASC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., Stewart R. E. , Milbrandt J. A. , and Yau M. K. , 2006: On the simulation of winter precipitation types. J. Geophys. Res.,111, D18202, doi:10.1029/2005JD006665.

  • Thériault, J. M., Stewart R. E. , and Henson W. , 2010: On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J. Appl. Meteor. Climatol., 49, 14291442, doi:10.1175/2010JAMC2321.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., and Bringi V. N. , 2005: Drop axis ratios from 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966978, doi:10.1175/JTECH1767.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Schultz D. M. , Ryzhkov A. V. , and Holle R. L. , 2001: Multiscale structure and evolution of an Oklahoma winter precipitation event. Mon. Wea. Rev., 129, 486501, doi:10.1175/1520-0493(2001)129<0486:MSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Adams W. M. , and Bringi V. N. , 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30, 10531063, doi:10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Raghavan R. , and Bringi V. N. , 1993: Polarimetric radar modeling of mixtures of precipitation particles. IEEE Trans. Geosci. Remote Sens., 31, 10171030, doi:10.1109/36.263772.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Bringi V. N. , Hagen M. , and Meischner P. , 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32, 110, doi:10.1109/36.285183.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 10671078, doi:10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Chandrasekar V. , 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, doi:10.1175/2009JTECHA1358.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, P. C., 1965: Matrix formulation of electromagnetic scattering. Proc. IEEE, 53, 805812, doi:10.1109/PROC.1965.4058.

  • Williams, E. R., and Coauthors, 2011: Dual polarization radar winter storm studies supporting development of NEXRAD-based aviation hazards products. 35th Conf. on Radar Meteorology, Pittsburg, PA, Amer. Meteor. Soc., P13.202. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Manuscript/Paper191770/Williams_35RADAR_final.pdf.]

  • Williams, E. R., and Coauthors, 2013: Validation of NEXRAD radar differential reflectivity in snowstorms with airborne microphysical measurements: Evidence for hexagonal flat plate crystals. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 15A.6. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Manuscript/Paper228791/Williams_36RADAR_15A6.pdf.]

  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661, doi:10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolde, M., and Vali G. , 2001: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence on crystal form. J. Atmos. Sci., 58, 828841, doi:10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolfe, J. P., and Snider J. R. , 2012: A relationship between reflectivity and snow rate for a high-altitude S-band radar. J. Appl. Meteor. Climatol., 51, 11111128, doi:10.1175/JAMC-D-11-0112.1.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., Fabry F. , and Szyrmer W. , 2001: Observations of supercooled water and secondary ice generation by a vertically pointing X-band Doppler radar. Atmos. Res., 59–60, 343359, doi:10.1016/S0169-8095(01)00124-7.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., Balakrishnan N. , Ziegler C. L. , Bringi V. N. , Aydin K. , and Matejka T. , 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32, 678693, doi:10.1175/1520-0450(1993)032<0678:PSITSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., Keenan T. D. , Carey L. D. , and May P. , 2000: Sensitivity analysis of polarimetric variables at a 5-cm wavelength in rain. J. Appl. Meteor., 39, 15141526, doi:10.1175/1520-0450(2000)039<1514:SAOPVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., Ryzhkov A. V. , Straka J. , Liu Y. , and Vivekanandan J. , 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892913, doi:10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2136 911 284
PDF Downloads 1556 289 18