A Bistatic Phased-Array Doppler Sonar for Wave–Current Research

Jerome A. Smith Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Jerome A. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Wave breaking and wave-forced flows are important to air–sea interactions and to the transport and dispersal of materials at sea. But recent measurements have shown a discrepancy in the Eulerian response to wave groups compared to scientists’ current theoretical understanding of wave–current interactions. Flow structures on scales of centimeters to meters occur underneath breaking waves, and larger-scale flows are driven by wave–current interactions (e.g., Langmuir circulation, alongshore flows). Such details of the vertically resolved flow are just beginning to be modeled, and observational guidance is needed. Here a new instrument is described that is intended to measure waves and currents over a 2D vertical plane underwater, resolving two components of velocity on this plane. Initial observations were made near the Scripps Pier (La Jolla, California), where steep waves and strong currents can be reliably found, yet logistics are not too burdensome. To get the spatial resolution desired using 200-kHz sound, ping-to-ping “coherent processing” would have be used for Doppler estimation; however, near shore the reverberations remain too strong for far too long to get any coherence, unlike the previous experience in deep water. In view of this, using much higher frequencies (>1 MHz) with “incoherent processing” is suggested; the increased attenuation at higher frequencies then would subdue the reverberation problem, but with comparable space–time resolution.

Corresponding author address: Jerome A. Smith, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, Mail Code 0213, La Jolla, CA 92093-0213. E-mail: jasmith@ucsd.edu

Abstract

Wave breaking and wave-forced flows are important to air–sea interactions and to the transport and dispersal of materials at sea. But recent measurements have shown a discrepancy in the Eulerian response to wave groups compared to scientists’ current theoretical understanding of wave–current interactions. Flow structures on scales of centimeters to meters occur underneath breaking waves, and larger-scale flows are driven by wave–current interactions (e.g., Langmuir circulation, alongshore flows). Such details of the vertically resolved flow are just beginning to be modeled, and observational guidance is needed. Here a new instrument is described that is intended to measure waves and currents over a 2D vertical plane underwater, resolving two components of velocity on this plane. Initial observations were made near the Scripps Pier (La Jolla, California), where steep waves and strong currents can be reliably found, yet logistics are not too burdensome. To get the spatial resolution desired using 200-kHz sound, ping-to-ping “coherent processing” would have be used for Doppler estimation; however, near shore the reverberations remain too strong for far too long to get any coherence, unlike the previous experience in deep water. In view of this, using much higher frequencies (>1 MHz) with “incoherent processing” is suggested; the increased attenuation at higher frequencies then would subdue the reverberation problem, but with comparable space–time resolution.

Corresponding author address: Jerome A. Smith, Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, Mail Code 0213, La Jolla, CA 92093-0213. E-mail: jasmith@ucsd.edu
Save
  • Agrawal, Y. C., Terray E. A. , Donelan M. A. , Hwang P. A. , Williams A. J. III, Drennan W. M. , Kahma K. K. , and Krtaigorodski S. A. , 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, doi:10.1038/359219a0.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., Rascle N. , and Belibassakis K. A. , 2008: Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modell., 20, 3560, doi:10.1016/j.ocemod.2007.07.001.

    • Search Google Scholar
    • Export Citation
  • Bowen, A. J., 1969: The generation of longshore currents on a plane beach. J. Mar. Res., 27, 206215.

  • Bowen, A. J., Inman D. L. , and Simmons V. P. , 1968: Wave ‘setdown’ and wave setup. J. Geophys. Res., 73, 25692577, doi:10.1029/JB073i008p02569.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., 1977: The generation of Langmuir circulation by an instability mechanism. J. Fluid Mech., 81, 209223, doi:10.1017/S0022112077001980.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and Leibovich S. , 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, doi:10.1017/S0022112076001420.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Fairall C. W. , 1994: Spray droplet modeling. 1. Lagrangian model simulation of the turbulent transport of evaporating droplets. J. Geophys. Res., 99, 25 29525 311, doi:10.1029/94JC01883.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., Ginis I. , and Hara T. , 2009: The effect of wind–wave–current interaction on air–sea momentum fluxes and ocean response in tropical cyclones. J. Phys. Oceanogr., 39, 10191034, doi:10.1175/2008JPO4066.1.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., Vagle S. , and Booth A. D. , 1998: A free-flooding acoustical resonator for measurement of bubble size distributions. J. Atmos. Oceanic Technol., 15, 11321146, doi:10.1175/1520-0426(1998)015<1132:AFFARF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1976: Generation of Langmuir circulations by surface waves—A feedback mechanism. J. Mar. Res., 34, 117130.

  • Garrett, C., and Smith J. , 1976: On the interaction between long and short surface waves. J. Phys. Oceanogr., 6, 925930, doi:10.1175/1520-0485(1976)006<0925:OTIBLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and Farmer D. M. , 1999: Observations of the scale and occurrence of breaking surface waves. J. Phys. Oceanogr., 29, 25952606, doi:10.1175/1520-0485(1999)029<2595:OOTSAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and Farmer D. M. , 2004: Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 34, 10671086, doi:10.1175/1520-0485(2004)034<1067:NTITPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., Banner M. L. , and Garrett C. , 2008: Spectrally resolved energy dissipation rate and momentum flux of breaking waves. J. Phys. Oceanogr., 38, 12961312, doi:10.1175/2007JPO3762.1.

    • Search Google Scholar
    • Export Citation
  • Groeneweg, J., and Klopman G. , 1998: Changes of the mean velocity profiles in the combined wave–current motion described in a GLM formulation. J. Fluid Mech., 370, 271296, doi:10.1017/S0022112098002018.

    • Search Google Scholar
    • Export Citation
  • Groeneweg, J., and Battjes J. A. , 2003: Three-dimensional wave effects on a steady current. J. Fluid Mech., 478, 325343, doi:10.1017/S0022112002003476.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1971: On the mass and momentum transfer between short gravity waves and larger-scale motions. J. Fluid Mech., 50, 189205, doi:10.1017/S0022112071002520.

    • Search Google Scholar
    • Export Citation
  • Hay, A. E., Zedel L. , Cheel R. , and Dillon J. , 2012a: Observations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness beds using a prototype wideband coherent Doppler profiler: 1. The oscillatory component of the flow. J. Geophys. Res., 117, C03005, doi:10.1029/2011JC007113.

    • Search Google Scholar
    • Export Citation
  • Hay, A. E., Zedel L. , Cheel R. , and Dillon J. , 2012b: Observations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness using a prototype wideband coherent Doppler profiler: 2. Turbulence and stress. J. Geophys. Res., 117, C03006, doi:10.1029/2011JC007114.

    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., and Guza R. T. , 1991: Wind-wave nonlinearity observed at the sea floor. Part I: Forced-wave energy. J. Phys. Oceanogr., 21, 17401761, doi:10.1175/1520-0485(1991)021<1740:WWNOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., Elgar S. , and Guza R. T. , 1994: Infragravity-frequency (0.005–0.05 Hz) motions on the shelf. Part I: Forced waves. J. Phys. Oceanogr., 24, 917927, doi:10.1175/1520-0485(1994)024<0917:IFHMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurther, D., and Lemmin U. , 1998: A constant-beam-width transducer for 3D acoustic Doppler profile measurements in open-channel flows. Meas. Sci. Technol., 9, 17061714, doi:10.1088/0957-0233/9/10/010.

    • Search Google Scholar
    • Export Citation
  • Hurther, D., and Lemmin U. , 2008: Improved turbulence profiling with field-adapted acoustic Doppler velocimeters using a bifrequency Doppler noise suppression method. J. Atmos. Oceanic Technol., 25, 452463, doi:10.1175/2007JTECHO512.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, J.-Y., and Street R. L. , 1991: Modulated flows beneath wind-ruffled, mechanically generated water waves. J. Geophys. Res., 96, 27112721, doi:10.1029/90JC02259.

    • Search Google Scholar
    • Export Citation
  • Kemp, P. H., and Simons R. R. , 1982: The interaction of waves and a turbulent current; waves propagating with the current. J. Fluid Mech., 116, 227250, doi:10.1017/S0022112082000445.

    • Search Google Scholar
    • Export Citation
  • Kemp, P. H., and Simons R. R. , 1983: The interaction of waves and a turbulent current: Waves propagating against the current. J. Fluid Mech., 130, 7389, doi:10.1017/S0022112083000981.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., Plueddemann A. J. , Trowbridge J. H. , and Sullivan P. P. , 2009: Significance of Langmuir circulation in upper ocean mixing: Comparison of observations and simulations. Geophys. Res. Lett., 36, L10603, doi:10.1029/2009GL037620.

    • Search Google Scholar
    • Export Citation
  • Kumar, N., Voulgaris G. , Warner J. C. , and Olabarrieta M. , 2012: Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modell., 47, 6595, doi:10.1016/j.ocemod.2012.01.003.

    • Search Google Scholar
    • Export Citation
  • Lamarre, E., and Melville W. K. , 1994a: Sound-speed measurements near the ocean surface. J. Acoust. Soc. Amer., 96, 36053616, doi:10.1121/1.410578.

    • Search Google Scholar
    • Export Citation
  • Lamarre, E., and Melville W. K. , 1994b: Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Amer., 95, 13171328, doi:10.1121/1.408572.

    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119123, doi:10.1126/science.87.2250.119.

  • Leibovich, S., 1980: On wave-current interaction theories of Langmuir circulations. J. Fluid Mech., 99, 715724, doi:10.1017/S0022112080000857.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and Serafin R. , 1984: Pulse-to-pulse coherent Doppler sonar signal processing techniques. J. Atmos. Oceanic Technol., 1, 293308, doi:10.1175/1520-0426(1984)001<0293:PTPCDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, M., Zahariev K. , and Garrett C. , 1995: Role of Langmuir circulation in the deepening of the ocean surface mixed layer. Science, 270, 19551957, doi:10.1126/science.270.5244.1955.

    • Search Google Scholar
    • Export Citation
  • Lohrmann, A., Hackett B. , and Røed L. P. , 1990: High resolution measurements of turbulence, velocity and stress using a pulse-to-pulse coherent sonar. J. Atmos. Oceanic Technol., 7, 1937, doi:10.1175/1520-0426(1990)007<0019:HRMOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1953: Mass transport in water waves. Philos. Trans. Roy. Soc. London,A245, 535–581, doi:10.1098/rsta.1953.0006.

  • Longuet-Higgins, M. S., 1969: A nonlinear mechanism for the generation of sea waves. Proc. Roy. Soc. London, A311, 371389, doi:10.1098/rspa.1969.0123.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1970a: Longshore currents generated by obliquely incident sea waves: 1. J. Geophys. Res., 75, 67786789, doi:10.1029/JC075i033p06778.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1970b: Longshore currents generated by obliquely incident sea waves: 2. J. Geophys. Res., 75, 6790–6801, doi:10.1029/JC075i033p06790.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and Stewart R. W. , 1960: Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech., 8, 565583, doi:10.1017/S0022112060000803.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and Stewart R. W. , 1961: The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech., 10, 529549, doi:10.1017/S0022112061000342.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and Stewart R. W. , 1962: Radiation stress and mass transport in gravity waves, with application to ‘surf-beats.’ J. Fluid Mech., 13, 481504, doi:10.1017/S0022112062000877.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and Stewart R. W. , 1964: Radiation stresses in water waves; A physical discussion, with applications. Deep-Sea Res. Oceanogr. Abstr., 11, 529562 , doi:10.1016/0011-7471(64)90001-4.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and Restrepo J. M. , 1999: The wave-driven ocean circulation. J. Phys. Oceanogr., 29, 25232540, doi:10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and Sullivan P. P. , 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237, doi:10.1016/S1353-2561(01)00041-X.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., Sullivan P. P. , and Moeng C. H. , 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, doi:10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., Restrepo J. M. , and Lane E. M. , 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech., 511, 135178, doi:10.1017/S0022112004009358.

    • Search Google Scholar
    • Export Citation
  • Mellor, G., 2003: The three-dimensional current and surface wave equations. J. Phys. Oceanogr., 33, 19781989, doi:10.1175/1520-0485(2003)033<1978:TTCASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., and Matusov P. , 2002: Distribution of breaking waves at the ocean surface. Nature, 417, 5863, doi:10.1038/417058a.

  • Melville, W. K., Veron F. , and White C. J. , 2002: The velocity field under breaking waves: Coherent structures and turbulence. J. Fluid Mech., 454, 203233, doi:10.1017/S0022112001007078.

    • Search Google Scholar
    • Export Citation
  • Monismith, S. G., Cowen E. A. , Nepf H. M. , Magnaudet J. , and Thais L. , 2007: Laboratory observations of mean flows under surface gravity waves. J. Fluid Mech., 573, 131147, doi:10.1017/S0022112006003594.

    • Search Google Scholar
    • Export Citation
  • Nepf, H. M., 1992: The production and mixing effects of Langmuir circulations. Ph.D. thesis, Stanford University, 268 pp.

  • Nepf, H. M., Wu C. H. , and Chan E. S. , 1998: A comparison of two- and three-dimensional wave breaking. J. Phys. Oceanogr., 28, 14961510, doi:10.1175/1520-0485(1998)028<1496:ACOTAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newberger, P. A., and Allen J. S. , 2007: Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94. J. Geophys. Res., 112, C08019, doi:10.1029/2006JC003474.

    • Search Google Scholar
    • Export Citation
  • Özkan-Haller, H. T., and Li Y. , 2003: Effects of wave-current interaction on shear instabilities of longshore currents. J. Geophys. Res., 108, 3139, doi:10.1029/2001JC001287.

    • Search Google Scholar
    • Export Citation
  • Pattison, M. J., and Belcher S. E. , 1999: Production rates of sea-spray droplets. J. Geophys. Res., 104, 18 39718 407, doi:10.1029/1999JC900090.

    • Search Google Scholar
    • Export Citation
  • Phillips, W. R. C., 2002: Langmuir circulations beneath growing or decaying surface waves. J. Fluid Mech., 469, 317342, doi:10.1017/S0022112002001908.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., and Smith J. A. , 1992: Repeat-sequence coding for improved precision of Doppler sonar and sodar. J. Atmos. Oceanic Technol., 9, 149163, doi:10.1175/1520-0426(1992)009<0149:RSCFIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rolland, T., and Lemmin U. , 1997: A two-component acoustic velocity profiler for use in turbulent open-channel flow. J. Hydraul. Res., 35, 545561, doi:10.1080/00221689709498410.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and Denbo D. W. , 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, doi:10.1029/94JC03202.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1980: Waves, currents, and Langmuir circulation. Ph.D. thesis, Dalhousie University, 242 pp.

  • Smith, J. A., 1989: Doppler sonar and surface waves: Range and resolution. J. Atmos. Oceanic Technol., 6, 680696, doi:10.1175/1520-0426(1989)006<0680:DSASWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 2001: Phased-array Doppler sonar measurements of near-surface motion: Langmuir circulation, surface waves, and breaking. Acoustical Oceanography, T. G. Leighton et al., Ed., Vol. 23, Part 2, Proceedings of the Institute of Acoustics Conference on Acoustical Oceanography, Bath University Press, 163170.

  • Smith, J. A., 2002: Continuous time–space sampling of near-surface velocities using sound. J. Atmos. Oceanic Technol., 19, 18601872, doi:10.1175/1520-0426(2002)019<1860:CTSSON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 2005: Acoustically observed bubble cloud evolution under deep-water breaking waves. Proc. Underwater Acoustic Measurements: Technologies and Results, Heraklion, Crete, Greece, Acoustical Society of America, 6 pp. [Available online at http://jerry.ucsd.edu/JSmith_PDF/2005-WaveGroupResponse(UAM).pdf.]

  • Smith, J. A., 2006a: Observed variability of ocean wave stokes drift, and the Eulerian response to passing groups. J. Phys. Oceanogr., 36, 13811402, doi:10.1175/JPO2910.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 2006b: Wave–current interactions in finite depth. J. Phys. Oceanogr., 36, 14031419, doi:10.1175/JPO2911.1.

  • Smith, J. A., and Brulefert C. , 2010: Evolution of persistent wave groups. J. Phys. Oceanogr., 40, 6784, doi:10.1175/2009JPO4149.1.

  • Stokes, G. G., 1847: On the theory of oscillatory waves. Trans. Cambridge Philos. Soc., 8, 441455.

  • Sullivan, P. P., McWilliams J. C. , and Melville W. K. , 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech., 507, 143174, doi:10.1017/S0022112004008882.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., McWilliams J. C. , and Melville W. K. , 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, doi:10.1017/S002211200700897X.

    • Search Google Scholar
    • Export Citation
  • Swan, C., Cummins I. P. , and James R. L. , 2001: An experimental study of two-dimensional surface water waves propagating on depth-varying currents. Part 1. Regular waves. J. Fluid Mech., 428, 273304, doi:10.1017/S0022112000002457.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., Donelan M. A. , Agrawal Y. C. , Drennan W. M. , Kahma K. K. , Williams A. J. , Hwang P. A. , and Kitaigorodskii S. A. , 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Terrill, E. J., and Melville W. K. , 1997: Sound-speed measurements in the surface-wave layer. J. Acoust. Soc. Amer., 102, 26072625, doi:10.1121/1.420315.

    • Search Google Scholar
    • Export Citation
  • Terrill, E. J., and Melville W. K. , 2000: A broadband acoustic technique for measuring bubble size distributions: Laboratory and shallow water measurements. J. Atmos. Oceanic Technol., 17, 220239, doi:10.1175/1520-0426(2000)017<0220:ABATFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1982: On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air–sea gas transfer. Philos. Trans. Roy. Soc. London,A304, 155210, doi:10.1098/rsta.1982.0011.

    • Search Google Scholar
    • Export Citation
  • Vagle, S., and Farmer D. M. , 1992: The measurement of bubble-size distributions by acoustical backscatter. J. Atmos. Oceanic Technol., 9, 630644, doi:10.1175/1520-0426(1992)009<0630:TMOBSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Veron, F., and Melville W. K. , 1999: Pulse-to-pulse coherent Doppler measurements of waves and turbulence. J. Atmos. Oceanic Technol., 16, 15801597, doi:10.1175/1520-0426(1999)016<1580:PTPCDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Veron, F., Melville W. K. , and Lenain L. , 2008: Wave-coherent air–sea heat flux. J. Phys. Oceanogr., 38, 788802, doi:10.1175/2007JPO3682.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C. H., and Nepf H. M. , 2002: Breaking criteria and energy losses for three-dimensional wave breaking. J. Geophys. Res., 107, 3177, doi:10.1029/2001JC001077.

    • Search Google Scholar
    • Export Citation
  • Zedel, L., 2008: Modeling pulse-to-pulse coherent Doppler sonar. J. Atmos. Oceanic Technol., 25, 18341844, doi:10.1175/2008JTECHO585.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 486 249 82
PDF Downloads 239 93 8