Measuring Stratospheric H2O with an Airborne Spectrometer

Maziar Bani Shahabadi Department of Atmospheric and Oceanic Science, McGill University, Montreal, Quebec, Canada

Search for other papers by Maziar Bani Shahabadi in
Current site
Google Scholar
PubMed
Close
and
Yi Huang Department of Atmospheric and Oceanic Science, McGill University, Montreal, Quebec, Canada

Search for other papers by Yi Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study examines the ability of an infrared spectral sensor flying at the tropopause level for retrieving stratospheric H2O. Synthetic downwelling radiance spectra simulated by the line-by-line radiative transfer model are used for this examination. The potential of high-sensitivity water vapor retrieval is demonstrated by an ideal sensor with low detector noise, high spectral resolution, and full infrared coverage. A suite of hypothetical sensors with varying specifications is then examined to determine the technological requirements for a satisfactory retrieval. This study finds that including far infrared in the sensor’s spectral coverage is essential for achieving accurate H2O retrieval with an accuracy of 0.4 ppmv (1-sigma). The uncertainties in other gas species such as CH4, N2O, O3, and CO2 do not significantly affect the H2O retrieval. Such a hyperspectral instrument may afford an advantageous tool, especially for detecting small-scale lower-stratospheric moistening events.

Corresponding author address: Maziar Bani Shahabadi, Department of Atmospheric and Oceanic Science, McGill University, Room 945, Burnside Hall, 805 Sherbrooke Street West, Montreal QC H3A 0B9, Canada. E-mail: maziar.banishahabadi@mail.mcgill.ca

Abstract

This study examines the ability of an infrared spectral sensor flying at the tropopause level for retrieving stratospheric H2O. Synthetic downwelling radiance spectra simulated by the line-by-line radiative transfer model are used for this examination. The potential of high-sensitivity water vapor retrieval is demonstrated by an ideal sensor with low detector noise, high spectral resolution, and full infrared coverage. A suite of hypothetical sensors with varying specifications is then examined to determine the technological requirements for a satisfactory retrieval. This study finds that including far infrared in the sensor’s spectral coverage is essential for achieving accurate H2O retrieval with an accuracy of 0.4 ppmv (1-sigma). The uncertainties in other gas species such as CH4, N2O, O3, and CO2 do not significantly affect the H2O retrieval. Such a hyperspectral instrument may afford an advantageous tool, especially for detecting small-scale lower-stratospheric moistening events.

Corresponding author address: Maziar Bani Shahabadi, Department of Atmospheric and Oceanic Science, McGill University, Room 945, Burnside Hall, 805 Sherbrooke Street West, Montreal QC H3A 0B9, Canada. E-mail: maziar.banishahabadi@mail.mcgill.ca
Save
  • Anderson, J. G., Wilmouth D. M. , Smith J. B. , and Sayres D. S. , 2012: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science, 337, 835839, doi:10.1126/science.1222978.

    • Search Google Scholar
    • Export Citation
  • Barrett, E. W., Kuhn P. M. , and Shlanta A. , 1973: Recent measurements of the injection of water vapor and ozone into the stratosphere by thunderstorms. Proceedings of the Second Conference on the Climate Impact Assessment Program, A. J. Broderick, Ed., National Technical Information Service, 34–46.

  • Bernath, P. F., and Coauthors, 2005: Atmospheric Chemistry Experiment (ACE): Mission overview. Geophys. Res. Lett., 32, L15S01, doi:10.1029/2005GL022386.

    • Search Google Scholar
    • Export Citation
  • Canas, T. A., Murray J. E. , and Harries J. E. , 1997: Tropospheric Airborne Fourier Transform Spectrometer (TAFTS). Satellite Remote Sensing of Clouds and the Atmosphere II, J. D. Haigh, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 3220), 91, doi:10.1117/12.301139.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Iacono M. J. , and Moncet J. , 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 76115 785, doi:10.1029/92JD01419.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Shephard M. W. , Mlawer E. J. , Delamere J. S. , Iacono M. J. , Cady-Pereira K. , Boukabara S. , and Brown P. D. , 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, doi:10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. de F., and Shine K. P. , 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 33093312, doi:10.1029/1999GL010487.

    • Search Google Scholar
    • Export Citation
  • Harries, J. E., 1973: Measurements of stratospheric water vapor using far-infrared techniques. J. Atmos. Sci., 30, 16911698, doi:10.1175/1520-0469(1973)030<1691:MOSWVU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harries, J. E., and Coauthors, 2008: The far-infrared earth. Rev. Geophys., 46, RG4004, doi:10.1029/2007RG000233.

  • Kley, D., Russell J. M. III, and Phillips C. , Eds., 2000: SPARC assessment of upper tropospheric and stratospheric water vapour. WCRP-113, WMO/TD-1043, SPARC Rep. 2, 312 pp.

  • Livesey, N. J., and Coauthors, 2003: The UARS Microwave Limb Sounder version 5 data set: Theory, characterization, and validation. J. Geophys. Res., 108, 4378, doi:10.1029/2002JD002273.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., Fenn R. W. , Selby J. E. A. , Volz F. E. , and Garing J. S. , 1972: Optical properties of the atmosphere. 3rd ed. Air Force Geophysical Laboratory Tech. Rep. AFCRL-72-0497, 80 pp.

  • Merrelli, A., and Turner D. D. , 2012: Comparing information content of upwelling far-infrared and midinfrared radiance spectra for clear atmosphere profiling. J. Atmos. Oceanic Technol., 29, 510526, doi:10.1175/JTECH-D-11-00113.1.

    • Search Google Scholar
    • Export Citation
  • Mlynczak, M. G., Johnson D. G. , and Applin J. I. , 2003: The Far-Infrared Spectroscopy of the Troposphere (FIRST) Project. NASA Earth Science Technology Conf. 2002, Pasadena, CA, NASA, 10 pp. [Available online at http://esto.nasa.gov/conferences/estc-2002/Papers/B4P2(Mlynczak).pdf.]

  • Oltmans, S. J., Vomel H. , Hofmann D. J. , Rosenlof K. H. , and Kley D. , 2000: The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado. Geophys. Res. Lett., 27, 34533456, doi:10.1029/2000GL012133.

    • Search Google Scholar
    • Export Citation
  • Palchetti, L., and Coauthors, 2005: Breadboard of the Fourier-transform spectrometer for the Radiation Explorer in the Far Infrared (REFIR) atmospheric mission. Appl. Opt., 44, 28702878, doi:10.1364/AO.44.002870.

    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., and Coauthors, 1998: Recent results from two new aircraft-based Fourier-transform interferometers: The Scanning High-Resolution Interferometer Sounder and the NPOESS Atmospheric Sounder Testbed Interferometer. Proc. Eighth Int. Workshop on Atmospheric Science from Space Using Fourier Transform Spectrometry, Toulouse, France, CNES, 6 pp. [Available online at http://dreadnaught.ssec.wisc.edu/~shis/docsGEN/shisextabs.pdf.]

  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific Publishing, 240 pp.

  • Russell, J. M., III, and Coauthors, 1993: The Halogen Occulation Experiment. J. Geophys. Res., 98, 10 77710 797, doi:10.1029/93JD00799.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M., Read W. G. , Santee M. L. , Livesay N. L. , Froidevaux L. , Lambert A. , and Manney G. L. , 2013: Convectively injected water vapor in the North American summer lowermost stratosphere. Geophys. Res. Lett., 40, 23162321, doi:10.1002/grl.50421.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., Rosenlof K. H. , Portmann R. W. , Daniel J. S. , Davis S. M. , Sanford T. J. , and Plattner G. K. , 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Thomason, L. W., Burton S. P. , Iyer N. , Zawodny J. M. , and Anderson J. , 2004: A revised water vapor product for the Stratospheric Aerosol and Gas Experiment (SAGE) II version 6.2 data set. J. Geophys. Res., 109, D06312, doi:10.1029/2003JD004465.

    • Search Google Scholar
    • Export Citation
  • Weinstock, E. M., and Coauthors, 2009: Validation of the Harvard Lyman-α in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor. J. Geophys. Res., 114, D23301, doi:10.1029/2009JD012427.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2013: Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc.,94, 1519–1539, doi:10.1175/BAMS-D-12-00149.1.

  • Worden, J., Kulawik S. S. , Shephard M. W. , Clough S. A. , Worden H. , Bowman K. , and Goldman A. , 2004: Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection. J. Geophys. Res., 109, D09308, doi:10.1029/2004JD004522.

    • Search Google Scholar
    • Export Citation