On “Gridless” Interpolation and Subgrid Data Density

Toshio Michael Chin Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Toshio Michael Chin in
Current site
Google Scholar
PubMed
Close
,
Jorge Vazquez-Cuervo Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Jorge Vazquez-Cuervo in
Current site
Google Scholar
PubMed
Close
, and
Edward M. Armstrong Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Edward M. Armstrong in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Nearest-neighbor gridding, binning, and bin-averaging procedures are performed routinely to map the irregularly sampled data onto a grid for data analysis and assimilation. Because these procedures are actually an interpolation procedure based on a piecewise constant function as the interpolation kernel, they tend to discard the subgrid locations of the data. Use of a locally continuous function for the interpolation kernel can preserve the subgrid location information in the data, at the cost of numerical sensitivity to the spatial variation in data density. This paper suggests a simple numerical procedure, based on a single correlation coefficient parameter, to eliminate such numerical sensitivity.

Corresponding author address: Mike Chin, Jet Propulsion Laboratory, M/S 238-600, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: mike.chin@jpl.nasa.gov

Abstract

Nearest-neighbor gridding, binning, and bin-averaging procedures are performed routinely to map the irregularly sampled data onto a grid for data analysis and assimilation. Because these procedures are actually an interpolation procedure based on a piecewise constant function as the interpolation kernel, they tend to discard the subgrid locations of the data. Use of a locally continuous function for the interpolation kernel can preserve the subgrid location information in the data, at the cost of numerical sensitivity to the spatial variation in data density. This paper suggests a simple numerical procedure, based on a single correlation coefficient parameter, to eliminate such numerical sensitivity.

Corresponding author address: Mike Chin, Jet Propulsion Laboratory, M/S 238-600, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: mike.chin@jpl.nasa.gov
Save
  • Belkin, I. M., and O’Reilly J. E. , 2009: An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Mar. Syst., 78, 319326, doi:10.1016/j.jmarsys.2008.11.018.

    • Search Google Scholar
    • Export Citation
  • Bookstein, F. L., 1989: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell., 11, 567585, doi:10.1109/34.24792.

    • Search Google Scholar
    • Export Citation
  • Cayula, J.-F., and Cornillon P. , 1992: Edge detection algorithm for SST images. J. Atmos. Oceanic Technol., 9, 6780, doi:10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chin, T. M., Milliff R. F. , and Large W. G. , 1998: Basin-scale, high-wavenumber sea surface wind fields from a multiresolution analysis of scatterometer data. J. Atmos. Oceanic Technol., 15, 741763, doi:10.1175/1520-0426(1998)015<0741:BSHWSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daubechies, I., 1992: Ten Lectures on Wavelets.CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, Society for Industrial and Applied Mathematics, 357 pp.

  • de Boor, C., 1978: A Practical Guide to Splines.Springer-Verlag, 392 pp.

  • Golub, G. H., and van Loan C. F. , 1989: Matrix Computations.2nd ed. Johns Hopkins University Press, 642 pp.

  • Inoue, H., 1986: A least-squares smooth fitting for irregularly spaced data: Finite-element approach using the cubic B-spline basis. Geophysics, 51, 20512066, doi:10.1190/1.1442060.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability.Cambridge University Press, 364 pp.

  • Kaplan, A., Cane M. , and Kushnir Y. , 2003: Reduced space approach to the optimal analysis of historical marine observations: Accomplishments, difficulties, and prospects. Advances in the applications of marine climatology: The dynamic part of the WMO guide to the applications of marine climatology, Rev. 1, WMO/TD-1081, JCOMM Tech. Rep. 13, 199–216.

  • Lewis, F. L., 1986: Optimal Estimation: With an Introduction to Stochastic Control Theory.John Wiley and Sons, 368 pp.

  • Mallat, S. G., 1998: A Wavelet Tour of Signal Processing.Academic Press, 577 pp.

  • Meneveau, C., 1991: Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech., 232, 469520, doi:10.1017/S0022112091003786.

    • Search Google Scholar
    • Export Citation
  • Prenter, P. M., 1975: Splines and Variational Methods.Wiley, 323 pp.

  • Reynolds, R. W., and Smith T. M. , 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Rayner N. A. , Smoth T. M. , Stokes D. C. , and Wang W. , 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thacker, W. C., and Esenkov O. E. , 2002: Assimilating XBT data into HYCOM. J. Atmos. Oceanic Technol., 19, 709724, doi:10.1175/1520-0426(2002)019<0709:AXDIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Unser, M., Aldroubi A. , and Eden M. , 1993: A family of polynomial spline wavelet transform. Signal Process., 30, 141162, doi:10.1016/0165-1684(93)90144-Y.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem.Cambridge University Press, 458 pp.