Stereophotogrammetry of Oceanic Clouds

Rusen Öktem Department of Earth and Planetary Science, University of California, Berkeley, and Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Rusen Öktem in
Current site
Google Scholar
PubMed
Close
,
Prabhat Department of Earth and Planetary Science, University of California, Berkeley, and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Prabhat in
Current site
Google Scholar
PubMed
Close
,
James Lee Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by James Lee in
Current site
Google Scholar
PubMed
Close
,
Aaron Thomas Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Aaron Thomas in
Current site
Google Scholar
PubMed
Close
,
Paquita Zuidema Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by Paquita Zuidema in
Current site
Google Scholar
PubMed
Close
, and
David M. Romps Department of Earth and Planetary Science, University of California, Berkeley, and Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by David M. Romps in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study extends ground-based stereophotogrammetry of clouds to oceanic settings, where there are often none of the landmarks used in traditional camera calibration. This paper introduces a zero-landmark calibration technique and tests it with two off-the-shelf digital cameras situated about 1 km apart facing Biscayne Bay in Miami, Florida. The precision of the stereo reconstruction is studied theoretically, and the accuracy of the reconstructions is validated against lidar and radiosondes. The stereo cameras are able to accurately reconstruct a histogram of cloud-base heights from a single-image pair, a task that requires tens of minutes of observation from a cloud lidar. The stereo cameras are also able to accurately reconstruct horizontal winds in cloud layers with a temporal resolution in the range of 30 s to 5 min, compared to once every 12 h for a typical radiosonde launch site.

Current affiliation: Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California.

Corresponding author address: Rusen Öktem, Department of Earth and Planetary Science, University of California, Berkeley, 455 McCone Hall, Berkeley, CA 94720. E-mail: roktem@lbl.gov

Abstract

This study extends ground-based stereophotogrammetry of clouds to oceanic settings, where there are often none of the landmarks used in traditional camera calibration. This paper introduces a zero-landmark calibration technique and tests it with two off-the-shelf digital cameras situated about 1 km apart facing Biscayne Bay in Miami, Florida. The precision of the stereo reconstruction is studied theoretically, and the accuracy of the reconstructions is validated against lidar and radiosondes. The stereo cameras are able to accurately reconstruct a histogram of cloud-base heights from a single-image pair, a task that requires tens of minutes of observation from a cloud lidar. The stereo cameras are also able to accurately reconstruct horizontal winds in cloud layers with a temporal resolution in the range of 30 s to 5 min, compared to once every 12 h for a typical radiosonde launch site.

Current affiliation: Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California.

Corresponding author address: Rusen Öktem, Department of Earth and Planetary Science, University of California, Berkeley, 455 McCone Hall, Berkeley, CA 94720. E-mail: roktem@lbl.gov
Save
  • Ackerman, T. P., and Stokes G. M. , 2003: The atmospheric radiation measurement program. Phys. Today, 56, 38–44, doi:10.1063/1.1554135.

    • Search Google Scholar
    • Export Citation
  • Allmen, M. C., and Kegelmeyer P. , 1996: The computation of cloud-base height from paired whole-sky imaging cameras. J. Atmos. Oceanic Technol., 13, 97113, doi:10.1175/1520-0426(1996)013<0097:TCOCBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bradbury, D. L., and Fujita T. , 1968: Computation of height and velocity of clouds from dual, whole-sky, time-lapse picture sequences. SMRP Paper 70, Dept. of Geophysical Sciences, University of Chicago, 34 pp.

  • Bradski, G., and Kaehler A. , 2008: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly, 555 pp.

  • Brown, D. C., 1966: Decentering distortion of lenses. Photogramm. Eng., 32, 444462.

  • Collis, S., Protat A. , May P. T. , and Williams C. , 2013: Statistics of storm updraft velocities from TWP-ICE including verification with profiling measurements. J. Appl. Meteor. Climatol., 52, 1909–1922, doi:10.1175/JAMC-D-12-0230.1.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and Coauthors, 2008: The Cumulus, Photogrammetric, In Situ, and Doppler Observations Experiment of 2006. Bull. Amer. Meteor. Soc., 89, 5773, doi:10.1175/BAMS-89-1-57.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1979: Dual-Doppler radar coverage area as a function of measurement accuracy and spatial resolution. J. Appl. Meteor., 18, 12291233, doi:10.1175/1520-0450-18.9.1229.

    • Search Google Scholar
    • Export Citation
  • Fielding, M. D., Chiu J. C. , Hogan R. J. , and Feingold G. , 2013: 3D cloud reconstructions: Evaluation of scanning radar scan strategy with a view to surface shortwave radiation closure. J. Geophys. Res. Atmos., 118, 9153–9167, doi:10.1002/jgrd.50614.

    • Search Google Scholar
    • Export Citation
  • Forsyth, D. A., and Ponce J. , 2003: Computer Vision: A Modern Approach. Prentice Hall, 689 pp.

  • Gallup, D., Frahm J.-M. , Mordohai P. , and Pollefeys M. , 2008: Variable baseline/resolution stereo. 2008 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2562–2569, doi:10.1109/CVPR.2008.4587671.

  • Ghate, V. P., Miller M. A. , and DiPretore L. , 2011: Vertical velocity structure of marine boundary layer trade wind cumulus clouds. J. Geophys. Res.,116, D16206, doi:10.1029/2010JD015344.

  • Hartley, R., and Zisserman A. , 2003: Multiple View Geometry in Computer Vision. Cambridge University Press, 655 pp.

  • Hu, J., Razdan A. , and Zehnder J. A. , 2009: Geometric calibration of digital cameras for 3D cumulus cloud measurements. J. Atmos. Oceanic Technol., 26, 200214, doi:10.1175/2008JTECHA1079.1.

    • Search Google Scholar
    • Export Citation
  • Kassander, A. R., and Sims L. L. , 1957: Cloud photogrammetry with ground-located K-17 aerial cameras. J. Meteor., 14, 4349, doi:10.1175/0095-9634-14.1.43.

    • Search Google Scholar
    • Export Citation
  • Kassianov, E., Long C. N. , and Christy J. , 2005: Cloud-base-height estimation from paired ground-based hemispherical observations. J. Appl. Meteor., 44, 12211233, doi:10.1175/JAM2277.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., and Albrecht B. A. , 2010: Vertical velocity statistics in fair-weather cumuli at the ARM TWP Nauru Climate Research Facility. J. Climate, 23, 65906604, doi:10.1175/2010JCLI3449.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Albrecht B. A. , Lhermitte R. , and Savtchenko A. , 2001: Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli. J. Atmos. Sci., 58, 17501766, doi:10.1175/1520-0469(2001)058<1750:ROOUDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Albrecht B. A. , and Marks F. D. Jr., 2003: Cloud radar observations of vertical drafts and microphysics in convective rain. J. Geophys. Res., 108, 4053, doi:10.1029/2001JD002033.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Clothiaux E. E. , Miller M. A. , Albrecht B. A. , Stephens G. L. , and Ackerman T. P. , 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624, doi:10.1175/BAMS-88-10-1608.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Bharadwaj N. , Widener K. , Jo I. , and Johnson K. , 2014: Scanning ARM cloud radars (SACR’s). Part I: Operational sampling strategies. J. Atmos. Oceanic Technol., 31, 569–582, doi:10.1175/JTECH-D-13-00044.1.

    • Search Google Scholar
    • Export Citation
  • Koppe, C., 1896: Photogrammetrie und Internationale Wolkenmessung. Braunschweig Verlag, 108 pp.

  • Malkus, J. S., and Ronne C. , 1954: On the structure of some cumulonimbus clouds which penetrated the high tropical troposphere. Tellus, 6A, 351366, doi:10.1111/j.2153-3490.1954.tb01130.x.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and Voyles J. W. , 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Orville, H. D., and Kassander A. R. Jr., 1961: Terrestrial photogrammetry of clouds. J. Meteor., 18, 682687, doi:10.1175/1520-0469(1961)018<0682:TPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., Teukolsky S. A. , Vetterling W. T. , and Flannery B. P. , 2007: Numerical Recipes: The Art of Scientific Computing. Cambridge University, 1256 pp.

  • Seiz, G., Baltsavias E. P. , and Gruen A. , 2002: Cloud mapping from the ground: Use of photogrammetric methods. Photogramm. Eng. Remote Sens., 68, 941951.

    • Search Google Scholar
    • Export Citation
  • Warner, C., Renick J. , Balshaw M. , and Douglas R. , 1973: Stereo photogrammetry of cumulonimbus clouds. Quart. J. Roy. Meteor. Soc., 99, 105115, doi:10.1002/qj.49709941910.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and Houze R. A. , 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123, 19211940, doi:10.1175/1520-0493(1995)123<1921:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., Zhang L. , Hansford D. , Radzan A. , Selover N. , and Brown C. , 2006: Using digital cloud photogrammetry to characterize the onset and transition from shallow to deep convection over orography. Mon. Wea. Rev., 134, 25272546, doi:10.1175/MWR3194.1.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., Hu J. , and Razdan A. , 2007: A stereo photogrammetric technique applied to orographic convection. Mon. Wea. Rev., 135, 22652277, doi:10.1175/MWR3401.1.

    • Search Google Scholar
    • Export Citation