Spatial Optimal Interpolation of Aquarius Sea Surface Salinity: Algorithms and Implementation in the North Atlantic

Oleg Melnichenko International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Oleg Melnichenko in
Current site
Google Scholar
PubMed
Close
,
Peter Hacker Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Peter Hacker in
Current site
Google Scholar
PubMed
Close
,
Nikolai Maximenko International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Nikolai Maximenko in
Current site
Google Scholar
PubMed
Close
,
Gary Lagerloef Earth and Space Research, Seattle, Washington

Search for other papers by Gary Lagerloef in
Current site
Google Scholar
PubMed
Close
, and
James Potemra Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by James Potemra in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A method is presented for mapping sea surface salinity (SSS) from Aquarius level-2 along-track data in order to improve the utility of the SSS fields at short length [O(150 km)] and time [O(1 week)] scales. The method is based on optimal interpolation (OI) and derives an SSS estimate at a grid point as a weighted sum of nearby satellite observations. The weights are optimized to minimize the estimation error variance. As an initial demonstration, the method is applied to Aquarius data in the North Atlantic. The key element of the method is that it takes into account the so-called long-wavelength errors (by analogy with altimeter applications), referred to here as interbeam and ascending/descending biases, which appear to correlate over long distances along the satellite tracks. The developed technique also includes filtering of along-track SSS data prior to OI and the use of realistic correlation scales of mesoscale SSS anomalies. All these features are shown to result in more accurate SSS maps, free from spurious structures. A trial SSS analysis is produced in the North Atlantic on a uniform grid with 0.25° resolution and a temporal resolution of one week, encompassing the period from September 2011 through August 2013. A brief statistical description, based on the comparison between SSS maps and concurrent in situ data, is used to demonstrate the utility of the OI analysis and the potential of Aquarius SSS products to document salinity structure at ~150-km length and weekly time scales.

School of Ocean and Earth Science and Technology Contribution Number 9105 and International Pacific Research Center Contribution Number 1052.

Corresponding author address: Oleg Melnichenko, International Pacific Research Center, University of Hawai‘i at Mānoa, POST Bldg., Room 401, 1680 East-West Road, Honolulu, HI 96822. E-mail: oleg@hawaii.edu

Abstract

A method is presented for mapping sea surface salinity (SSS) from Aquarius level-2 along-track data in order to improve the utility of the SSS fields at short length [O(150 km)] and time [O(1 week)] scales. The method is based on optimal interpolation (OI) and derives an SSS estimate at a grid point as a weighted sum of nearby satellite observations. The weights are optimized to minimize the estimation error variance. As an initial demonstration, the method is applied to Aquarius data in the North Atlantic. The key element of the method is that it takes into account the so-called long-wavelength errors (by analogy with altimeter applications), referred to here as interbeam and ascending/descending biases, which appear to correlate over long distances along the satellite tracks. The developed technique also includes filtering of along-track SSS data prior to OI and the use of realistic correlation scales of mesoscale SSS anomalies. All these features are shown to result in more accurate SSS maps, free from spurious structures. A trial SSS analysis is produced in the North Atlantic on a uniform grid with 0.25° resolution and a temporal resolution of one week, encompassing the period from September 2011 through August 2013. A brief statistical description, based on the comparison between SSS maps and concurrent in situ data, is used to demonstrate the utility of the OI analysis and the potential of Aquarius SSS products to document salinity structure at ~150-km length and weekly time scales.

School of Ocean and Earth Science and Technology Contribution Number 9105 and International Pacific Research Center Contribution Number 1052.

Corresponding author address: Oleg Melnichenko, International Pacific Research Center, University of Hawai‘i at Mānoa, POST Bldg., Room 401, 1680 East-West Road, Honolulu, HI 96822. E-mail: oleg@hawaii.edu
Save
  • Bingham, F. M., Howden S. D. , and Koblinsky C. J. , 2002: Sea surface salinity measurements in the historical database. J. Geophys. Res., 107, 8019, doi:10.1029/2000JC000767.

    • Search Google Scholar
    • Export Citation
  • Blanc, F., Le Traon P.-Y. , and Houry S. , 1995: Reducing orbit error with an inverse method to estimate the oceanic variability from satellite altimetry. J. Atmos. Oceanic Technol., 12, 150160, doi:10.1175/1520-0426(1995)012<0150:ROEFAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., Davis R. E. , and Fandry C. B. , 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, doi:10.1016/0011-7471(76)90001-2.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors, 2009: U.S. GODAE: Global ocean prediction with the Hybrid Coordinate Ocean Model (HYCOM). Oceanography, 22, 6475, doi:10.5670/oceanog.2009.39.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., Schlax M. G. , and Samelson R. M. , 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Clancy, R. M., Phoebus P. A. , and Pollak K. D. , 1990: An operational global-scale ocean thermal analysis system. J. Atmos. Oceanic Technol., 7, 233254, doi:10.1175/1520-0426(1990)007<0233:AOGSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., McPhaden M. J. , Dessier A. , and Gouriou Y. , 2005: Time and space scales for sea surface salinity in the tropical ocean. Deep-Sea Res. I, 52, 787813, doi:10.1016/j.dsr.2004.11.012.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., Le Traon P. Y. , and Reverdin G. , 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47718 498, doi:10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and Wijffels S. E. , 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, doi:10.1175/2010JCLI3377.1.

    • Search Google Scholar
    • Export Citation
  • Ffield, A., 2007: Amazon and Orinoco River plumes and NBC rings: Bystanders or participants in hurricane events? J. Climate, 20, 316333, doi:10.1175/JCLI3985.1.

    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • Gouretski, V. V., and Koltermann K. P. , 2007: How much is the ocean really warming? Geophys. Res. Lett., 34, L01610, doi:10.1029/2006GL027834.

    • Search Google Scholar
    • Export Citation
  • Henocq, C., Boutin J. , Petitcolin F. , Reverdin G. , Arnault S. , and Lattes P. , 2010: Vertical variability of near-surface salinity in the tropics: Consequences for L-band radiometer calibration and validation. J. Atmos. Oceanic Technol., 27, 192209, doi:10.1175/2009JTECHO670.1.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., 2012: Satellite mission monitors ocean surface salinity. Eos, Trans. Amer. Geophys. Union, 93, 233234, doi:10.1029/2012EO250001.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., and Coauthors, 2008: The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanography, 21, 6881, doi:10.5670/oceanog.2008.68.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., and Coauthors, 2010: Resolving the global surface salinity field and variability by blending satellite and in situ observations. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306, doi:10.5270/OceanObs09.cwp.51.

  • Lagerloef, G., and Coauthors, 2013: Aquarius salinity validation analysis. JPL Aquarius Project Doc. AQ-014-PS-0016, Data Version 2.0, 36 pp. [Available online at ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/docs/v2/AQ-014-PS-0016_AquariusSalinityDataValidationAnalysis_DatasetVersion2.0.pdf.]

  • Lentz, S. J., 1995: Seasonal variations in the horizontal structure of the Amazon plume inferred from historical hydrographic data. J. Geophys. Res., 100, 23912400, doi:10.1029/94JC01847.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., Nadal F. , and Ducet N. , 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, doi:10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Le Vine, D. M., Lagerloef G. S. E. , Colomb F. R. , Yueh S. H. , and Pellerano F. A. , 2007: Aquarius: An instrument to monitor sea surface salinity from space. IEEE Trans. Geosci. Remote Sens., 45, 20402050, doi:10.1109/TGRS.2007.898092.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., 1990: Oceanographic data interpolation: Objective analysis and splines. J. Geophys. Res., 95, 13 52913 542, doi:10.1029/JC095iC08p13529.

    • Search Google Scholar
    • Export Citation
  • Muller-Karger, F. E., McClain C. R. , and Richardson P. L. , 1988: The dispersal of the Amazon’s water. Nature, 333, 5658, doi:10.1038/333056a0.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., Kestenare E. , Frankignoul C. , and Delcroix T. , 2007: Surface salinity in the Atlantic Ocean (30°S–50°N). Prog. Oceanogr., 73, 311340, doi:10.1016/j.pocean.2006.11.004.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and Smith T. M. , 1994: Improved global sea surface temperature analyses using optimal interpolation. J. Climate, 7, 929948, doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Smith T. M. , Liu C. , Chelton D. B. , Casey K. S. , and Schlax M. , 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Gilson J. , 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82, 81100, doi:10.1016/j.pocean.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and Rintoul S. R. , 1999: Some remarks on interpolation of nonstationary oceanographic fields. J. Atmos. Oceanic Technol., 16, 14341449, doi:10.1175/1520-0426(1999)016<1434:SROION>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thiebaux, H. J., and Pedder M. A. , 1987: Spatial Objective Analysis: With Applications in Atmospheric Science. Academic Press, 299 pp.

  • Thiebaux, H. J., Rogers E. , Wang W. , and Katz B. , 2003: A new high-resolution blended real-time global sea surface temperature analysis. Bull. Amer. Meteor. Soc., 84, 645656, doi:10.1175/BAMS-84-5-645.

    • Search Google Scholar
    • Export Citation
  • U.S. CLIVAR Office, 2007: Report of the U.S. CLIVAR Salinity Science Working Group. U.S. CLIVAR Rep. 2007-1, 46 pp. [Available online at http://www.usclivar.org/sites/default/files/Salinity_final_report.pdf.]

  • Weber, R. O., and Talkner P. , 1993: Some remarks on spatial correlation function models. Mon. Wea. Rev., 121, 26112617, doi:10.1175/1520-0493(1993)121<2611:SROSCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yaglom, A. M., 1986: Correlation Theory of Stationary and Related Random Functions I. Basic Results. Springer-Verlag, 526 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 954 339 73
PDF Downloads 299 56 3