Retrieval Models of Water Vapor and Wet Tropospheric Path Delay for the HY-2A Calibration Microwave Radiometer

Gang Zheng State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China

Search for other papers by Gang Zheng in
Current site
Google Scholar
PubMed
Close
,
Jingsong Yang State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, and Ocean College, Zhejiang University, Hangzhou, China

Search for other papers by Jingsong Yang in
Current site
Google Scholar
PubMed
Close
, and
Lin Ren State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China

Search for other papers by Lin Ren in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper focuses on the development and validation of retrieval models of water vapor (WV) and wet tropospheric path delay (PD) for the calibration microwave radiometer (CMR) on board the first ocean dynamic environment satellite of China—Haiyang-2A (HY-2A). The reference data are those of Jason-1 microwave radiometer (JMR) and Jason-2 advanced microwave radiometer (AMR). The crossover points of the HY-2A and Jason-1/2 satellite tracks are extracted, and the data pairs at these points are divided into fitting and validation datasets. The retrieval models of WV and PD are built for the CMR using the fitting dataset and genetic algorithm, and validated using the validation dataset. The validation shows that the results of the retrieval models are consistent with the JMR and AMR data, and the root-mean-square differences of WV and PD are 1.86 kg m−2 and 11.4 mm, respectively. Finally, the retrieved results from the CMR brightness temperature along-track data using the retrieval models and the AMR along-track data are gridded by the inverse distance weighted method. Their monthly-mean spatial distributions are compared in order to investigate the applicability of the retrieval models globally, namely, beyond locations of the data pairs in the validation dataset. The comparison shows that the retrieval models are applicable in most open ocean areas, and that the latitude and temporal inhomogeneity of the crossover point distribution in the fitting dataset does not lead to obvious latitude and temporal inhomogeneity in the gridded data.

Corresponding author address: Dr. Gang Zheng, State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, No. 36 Baochubei Road, Hangzhou 310012, China. E-mail: zhenguestc@gmail.com

Abstract

This paper focuses on the development and validation of retrieval models of water vapor (WV) and wet tropospheric path delay (PD) for the calibration microwave radiometer (CMR) on board the first ocean dynamic environment satellite of China—Haiyang-2A (HY-2A). The reference data are those of Jason-1 microwave radiometer (JMR) and Jason-2 advanced microwave radiometer (AMR). The crossover points of the HY-2A and Jason-1/2 satellite tracks are extracted, and the data pairs at these points are divided into fitting and validation datasets. The retrieval models of WV and PD are built for the CMR using the fitting dataset and genetic algorithm, and validated using the validation dataset. The validation shows that the results of the retrieval models are consistent with the JMR and AMR data, and the root-mean-square differences of WV and PD are 1.86 kg m−2 and 11.4 mm, respectively. Finally, the retrieved results from the CMR brightness temperature along-track data using the retrieval models and the AMR along-track data are gridded by the inverse distance weighted method. Their monthly-mean spatial distributions are compared in order to investigate the applicability of the retrieval models globally, namely, beyond locations of the data pairs in the validation dataset. The comparison shows that the retrieval models are applicable in most open ocean areas, and that the latitude and temporal inhomogeneity of the crossover point distribution in the fitting dataset does not lead to obvious latitude and temporal inhomogeneity in the gridded data.

Corresponding author address: Dr. Gang Zheng, State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, No. 36 Baochubei Road, Hangzhou 310012, China. E-mail: zhenguestc@gmail.com
Save
  • Brown, S., 2010: A novel near-land radiometer wet path-delay retrieval algorithm: Application to the Jason-2/OSTM advanced microwave radiometer. IEEE Trans. Geosci. Remote Sens., 48, 19861992, doi:10.1109/TGRS.2009.2037220.

    • Search Google Scholar
    • Export Citation
  • Brown, S., 2013: Maintaining the long-term calibration of the Jason-2/OSTM advanced microwave radiometer through intersatellite calibration. IEEE Trans. Geosci. Remote Sens., 51, 15311543, doi:10.1109/TGRS.2012.2213262.

    • Search Google Scholar
    • Export Citation
  • Brown, S., Ruf C. , Keihm S. , and Kitiyakara A. , 2003: Preliminary validation and performance of the Jason microwave radiometer. Proceedings of the 2003 IEEE Geoscience and Remote Sensing Symposium, T. I. Stein, Vol. 2, IEEE, 10771079, doi:10.1109/IGARSS.2003.1294016.

    • Search Google Scholar
    • Export Citation
  • Brown, S., Ruf C. , Keihm S. , and Kitiyakara A. , 2004: Jason microwave radiometer performance and on-orbit calibration. Mar. Geod., 27, 199220, doi:10.1080/01490410490465643.

    • Search Google Scholar
    • Export Citation
  • CLS, 2013: Jason-2 validation and cross calibration activities (annual report 2012). CLS.DOS/NT/12-223, SALP-RP-MA-EA-22141-CLS, 99 pp. [Available online at http://www.aviso.altimetry.fr/fileadmin/documents/calval/validation_report/J2/annual_report_j2_2012.pdf.]

  • CNES and JPL, 2012: AVISO and PODAAC user handbook: IGDR and GDR Jason products. SALP-MU-M5-OP-13184-CN (AVISO), JPL D-21352 (PODAAC), Edition 4.2, 125 pp. [Available online at http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j1_gdr.pdf.]

  • Dumont, J. P., Rosmorduc V. , Picot N. , Desai S. , Bonekamp H. , Figa J. , Lillibridge J. , and Scharroo R. , 2009: OSTM/Jason-2 products handbook. SALP-MU-M-OP-15815-CN (CNES), EUM/OPS-JAS/MAN/08/0041 (EUMETSAT), OSTM-29-1237 (JPL), Polar Series/OSTM J400 (NOAA/NESDIS), 59 pp. [Available online at http://www.osdpd.noaa.gov/ml/ocean/J2_handbook_v1-4_no_rev.pdf.]

  • Eymard, L., Tabary L. , Gerard E. , Boukabara S.-A. , and Le Cornec A. , 1996: The microwave radiometer aboard ERS-1. II. Validation of the geophysical products. IEEE Trans. Geosci. Remote Sens., 34, 291303, doi:10.1109/36.485108.

    • Search Google Scholar
    • Export Citation
  • Keihm, S. J., Janssen M. A. , and Ruf C. S. , 1995: TOPEX/Poseidon microwave radiometer (TMR) III. Wet troposphere range correction algorithm and pre-launch error budget. IEEE Trans. Geosci. Remote Sens., 33, 147161, doi:10.1109/36.368213.

    • Search Google Scholar
    • Export Citation
  • Keihm, S. J., Zlotnicki V. , and Ruf C. S. , 2000: TOPEX microwave radiometer performance evaluation, 1992-1998. IEEE Trans. Geosci. Remote Sens., 38, 13791386, doi:10.1109/36.843032.

    • Search Google Scholar
    • Export Citation
  • NSOAS, 2012: HY-2A calibration microwave radiometer data format user’s guide. National Satellite Ocean Application Service of China, 31 pp. [Available online at www.nsoas.gov.cn/NSOAS_En/Services/HY-2A%20Satellite%20User's%20Guide.zip.]

  • Obligis, E., Tran N. , and Eymard L. , 2004: An assessment of Jason-1 microwave radiometer measurements and products. Mar. Geod., 27, 255277, doi:10.1080/01490410490465481.

    • Search Google Scholar
    • Export Citation
  • Obligis, E., Eymard L. , Tran N. , Labroue S. , and Femenias P. , 2006: First three years of the microwave radiometer aboard Envisat: In-flight calibration, processing and validation of the geophysical products. J. Atmos. Oceanic Technol., 23, 802814, doi:10.1175/JTECH1878.1.

    • Search Google Scholar
    • Export Citation
  • Ruf, C., Keihm S. J. , and Janssen M. A. , 1995: TOPEX/Poseidon microwave radiometer (TMR). I. Instrument description and antenna temperature calibration. IEEE Trans. Geosci. Remote Sens., 33, 125137, doi:10.1109/36.368215.

    • Search Google Scholar
    • Export Citation
  • Scharroo, R., Lillibridge J. L. , Smith W. H. F. , and Schrama E. J. O. , 2004: Cross-calibration and long-term monitoring of the microwave radiometers of ERS, TOPEX, GFO, Jason, and Envisat. Mar. Geod., 27, 279297, doi:10.1080/01490410490465265.

    • Search Google Scholar
    • Export Citation
  • Sibthorpe, A., Brown S. , Desai S. D. , and Haines B. J. , 2011: Calibration and validation of the Jason-2/OSTM advanced microwave radiometer using terrestrial GPS stations. Mar. Geod., 34, 420430, doi:10.1080/01490419.2011.584839.

    • Search Google Scholar
    • Export Citation
  • Stum, J., 1998: A comparison of the brightness temperatures and water vapor path delays measured by the TOPEX, ERS-1, and ERS-2 microwave radiometers. J. Atmos. Oceanic Technol., 15, 987994, doi:10.1175/1520-0426(1998)015<0987:ACOTBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Zhang D. , 2008: Simulation on retrieving of atmospheric wet path delay by microwave radiometer on HY-2 satellite. 2008 China-Japan Joint Microwave Conference, IEEE, 665668, doi:10.1109/CJMW.2008.4772517.

  • Zlotnicki, V., and Desai S. D. , 2004: Assessment of the Jason microwave radiometer’s measurement of wet tropospheric path delay using comparisons to SSM/I and TMI. Mar. Geod., 27, 241253, doi:10.1080/01490410490465625.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 358 219 23
PDF Downloads 161 63 4