Measuring Turbulent Dissipation Using a Tethered ADCP

N. S. Lucas Bangor University, School of Ocean Sciences, Anglesey, United Kingdom

Search for other papers by N. S. Lucas in
Current site
Google Scholar
PubMed
Close
,
J. H. Simpson Bangor University, School of Ocean Sciences, Anglesey, United Kingdom

Search for other papers by J. H. Simpson in
Current site
Google Scholar
PubMed
Close
,
T. P. Rippeth Bangor University, School of Ocean Sciences, Anglesey, United Kingdom

Search for other papers by T. P. Rippeth in
Current site
Google Scholar
PubMed
Close
, and
C. P. Old University of Edinburgh, Edinburgh, United Kingdom

Search for other papers by C. P. Old in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The structure function method for estimating the dissipation rate of turbulent kinetic energy, previously validated for measurements from seabed fixed mounts, is applied to data from 1.2-MHz acoustic Doppler current profiler (ADCP) instruments operating in pulse–pulse coherent mode and mounted in midwater below a tethered buoy. Movements of the buoy introduce additional relative velocity components, but it is hypothesized that these flow components should not seriously interfere with the turbulence information because (i) horizontal or vertical translation induces the same flow component in all cells of an ADCP beam and (ii) any rotation of the instrument about its center induces flow components that are normal to the beam direction, and thus neither affect the structure function. This hypothesis is tested by comparing a series of dissipation measurements from a moored ADCP with those from a free-falling Vertical Microstructure Profiler (VMP) shear probe deployed from a nearby research vessel. The results indicate generally good conformity in both mean and variability over almost two decades of dissipation rates. The noise level of the structure function estimates with the pulse–pulse coherent ADCP is close to that of the VMP at ~3 × 10−10 W kg−1. This approach offers the prospect of long time series measurements of dissipation rate from moorings, albeit with restricted vertical range of a few meters.

Denotes Open Access content.

Corresponding author address: Natasha Lucas, Bangor University, School of Ocean Sciences, Askew Street, Menai Bridge, Anglesey LL59 5AB, United Kingdom. E-mail: n.lucas@bangor.ac.uk

Abstract

The structure function method for estimating the dissipation rate of turbulent kinetic energy, previously validated for measurements from seabed fixed mounts, is applied to data from 1.2-MHz acoustic Doppler current profiler (ADCP) instruments operating in pulse–pulse coherent mode and mounted in midwater below a tethered buoy. Movements of the buoy introduce additional relative velocity components, but it is hypothesized that these flow components should not seriously interfere with the turbulence information because (i) horizontal or vertical translation induces the same flow component in all cells of an ADCP beam and (ii) any rotation of the instrument about its center induces flow components that are normal to the beam direction, and thus neither affect the structure function. This hypothesis is tested by comparing a series of dissipation measurements from a moored ADCP with those from a free-falling Vertical Microstructure Profiler (VMP) shear probe deployed from a nearby research vessel. The results indicate generally good conformity in both mean and variability over almost two decades of dissipation rates. The noise level of the structure function estimates with the pulse–pulse coherent ADCP is close to that of the VMP at ~3 × 10−10 W kg−1. This approach offers the prospect of long time series measurements of dissipation rate from moorings, albeit with restricted vertical range of a few meters.

Denotes Open Access content.

Corresponding author address: Natasha Lucas, Bangor University, School of Ocean Sciences, Askew Street, Menai Bridge, Anglesey LL59 5AB, United Kingdom. E-mail: n.lucas@bangor.ac.uk
Save
  • Baumert, H. Z., Simpson J. H. , and Sundermann J. , 2005: Marine Turbulence: Theories, Observations, and Models. Vol. 1, Cambridge University Press, 630 pp.

  • Burchard, H., Petersen O. , and Rippeth T. P. , 1998: Comparing the performance of the Mellor-Yamada and the k-ε two-equation turbulence models. J. Geophys. Res., 103, 10 54310 554, doi:10.1029/98JC00261.

    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and Gargett A. E. , 1983: Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol. Oceanogr., 28, 801815, doi:10.4319/lo.1983.28.5.0801.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and Moum J. N. , 1995: Mixing efficiencies in turbulent tidal fronts: Results from direct and indirect measurements of density flux. J. Phys. Oceanogr., 25, 25832608, doi:10.1175/1520-0485(1995)025<2583:MEITTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., Osborn T. R. , and Nasmyth P. W. , 1984: Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech., 144, 231280, doi:10.1017/S0022112084001592.

    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and Petrie B. , 1981: Dynamical aspects of the flow through the strait of Belle Isle. J. Phys. Oceanogr., 11, 376393, doi:10.1175/1520-0485(1981)011<0376:DAOTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gartner, J. W., and Ganju N. K. , 2002: A preliminary evaluation of near-transducer velocities collected with low-blank acoustic Doppler current profiler. Proc. Conf. on Hydraulic Measurements and Experimental Methods, Estes Park, Colorado, ASCE, doi:10.1061/40655(2002)17.

    • Search Google Scholar
    • Export Citation
  • Gilcoto, M., Jones E. , and Fariña-Busto L. , 2009: Robust estimations of current velocities with four-beam broadband ADCPs. J. Atmos. Oceanic Technol., 26, 26422654, doi:10.1175/2009JTECHO674.1.

    • Search Google Scholar
    • Export Citation
  • Howarth, M. J., and Souza A. J. , 2005: Reynolds stress observations in continental shelf seas. Deep-Sea Res. II, 52, 10751086, doi:10.1016/j.dsr2.2005.01.003.

    • Search Google Scholar
    • Export Citation
  • Inall, M. E., and Rippeth T. P. , 2002: Dissipation of tidal energy and associated mixing in a wide fjord. Environ. Fluid Mech., 2, 219240, doi:10.1023/A:1019846829875.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. F. J., and Elliott A. J. , 2002: Internal waves in the Clyde Sea. Estuarine Coastal Shelf Sci., 54, 5164, doi:10.1006/ecss.2001.0831.

    • Search Google Scholar
    • Export Citation
  • Lacy, J. R., and Sherwood C. R. , 2004: Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow. J. Atmos. Oceanic Technol., 21, 14481461, doi:10.1175/1520-0426(2004)021<1448:AOAPAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and Serafin R. , 1984: Pulse-to-pulse coherent Doppler sonar signal processing techniques. J. Atmos. Oceanic Technol., 1, 293308, doi:10.1175/1520-0426(1984)001<0293:PTPCDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, W., Lancée C. , Cespedes E. , van der Steen A. F. W. , and Bom N. , 1997: Decorrelation of intravascular echo signals: Potentials for blood. J. Acoust. Soc. Amer., 102, 37853794, doi:10.1121/1.420141.

    • Search Google Scholar
    • Export Citation
  • Lorke, A., 2007: Boundary mixing in the thermocline of a large lake. J. Geophys. Res., 112, C09019, doi:10.1029/2006JC004008.

  • Lorke, A., Umlauf L. , and Mohrholz V. , 2008: Stratification and mixing on sloping boundaries. Geophys. Res. Lett., 35, L14610, doi:10.1029/2008GL034607.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., Lueck R. G. , and Huang D. , 2000: Turbulence characteristics in a tidal channel. J. Phys. Oceanogr., 30, 855867, doi:10.1175/1520-0485(2000)030<0855:TCIATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Gregg M. C. , 2003: Shear and baroclinic energy flux on the summer New England shelf. J. Phys. Oceanogr., 33, 14621475, doi:10.1175/1520-0485(2003)033<1462:SABEFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohrholz, V., Prandke H. , and Lass H. U. , 2008: Estimation of TKE dissipation rates in dense bottom plumes using a Pulse Coherent Acoustic Doppler Profiler (PC-ADP)—Structure function approach. J. Mar. Syst., 70, 217239, doi:10.1016/j.jmarsys.2007.03.004.

    • Search Google Scholar
    • Export Citation
  • RD Instruments, 1998: ADCP coordinate transformation—Formulas and calculations. P/N 951-6079-00 (July), 26 pp.

  • Rippeth, T. P., Williams E. , and Simpson J. H. , 2002: Reynolds stress and turbulent energy production in a tidal channel. J. Phys. Oceanogr., 32, 12421251, doi:10.1175/1520-0485(2002)032<1242:RSATEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., Simpson J. H. , Williams E. , and Inall M. E. , 2003: Measurement of the rates of production and dissipation of turbulent kinetic energy in an energetic tidal flow: Red Wharf Bay revisited. J. Phys. Oceanogr., 33, 18891901, doi:10.1175/1520-0485(2003)033<1889:MOTROP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rockland Scientific, 2007: VMP 500 Coastal Vertical Microstructure Profiler: Datasheet. Rockland Scientific, 2 pp. [Available online at http://rocklandscientific.com/VMP500/tabid/75/Default.aspx.]

  • Sauvageot, H., 1992: Radar Meterology. Artech House, 366 pp.

  • Sharples, J., Moore M. C. , Rippeth T. P. , Holligan P. M. , Hydes D. J. , Fisher N. R. , and Simpson J. H. , 2001: Phytoplankton distribution and survival in the thermocline. Limnol. Oceanogr., 46, 486496, doi:10.4319/lo.2001.46.3.0486.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., and Bowers D. G. , 1984: The role of tidal stirring in controlling the seasonal heat cycle in shelf seas. Ann. Geophys., 2 (4), 411416.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., Crawford W. R. , Rippeth T. P. , Campbell A. R. , and Cheok V. S. , 1996: The vertical structure of turbulent dissipation in shelf seas. J. Phys. Oceanogr., 26, 15791590, doi:10.1175/1520-0485(1996)026<1579:TVSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., Wiles P. J. , and Lincoln B. J. , 2011: Internal seiche modes and bottom boundary-layer dissipation in a temperate lake from acoustic measurements. Limnol. Oceanogr., 56, 18931906, doi:10.4319/lo.2011.56.5.1893.

    • Search Google Scholar
    • Export Citation
  • Stacey, M. T., Monismith G. , and Burau J. R. , 1999: Measurements of Reynolds stress profiles in unstratified tidal flow. J. Geophys. Res., 104, 10 93310 949, doi:10.1029/1998JC900095.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., and Elgar S. , 2003: Spatial scales of stress-carrying nearshore turbulence. J. Phys. Oceanogr., 33, 11221128, doi:10.1175/1520-0485(2003)033<1122:SSOSNT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wiles, P. J., Rippeth T. P. , Simpson J. H. , and Hendricks P. J. , 2006: A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophys. Res. Lett., 33, L21608, doi:10.1029/2006GL027050.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Simpson J. H. , 2004: Uncertainties in estimates of Reynolds stress and TKE production rate using the ADCP variance method. J. Atmos. Oceanic Technol., 21, 347357, doi:10.1175/1520-0426(2004)021<0347:UIEORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zedel, L., Hay A. E. , Cabrera R. , and Lohrmann A. , 1996: Performance of a single-beam pulse-to-pulse coherent Doppler profiler. IEEE J. Oceanic Eng., 21, 290297, doi:10.1109/48.508159.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 672 202 15
PDF Downloads 561 195 16