Ocean Data Impacts in Global HYCOM

James A. Cummings Oceanography Division, Naval Research Laboratory, Monterey, California

Search for other papers by James A. Cummings in
Current site
Google Scholar
PubMed
Close
and
Ole Martin Smedstad QinetiQ North America, Stennis Space Center, Mississippi

Search for other papers by Ole Martin Smedstad in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of the assimilation of ocean observations on reducing global Hybrid Coordinate Ocean Model (HYCOM) 48-h forecast errors is presented. The assessment uses an adjoint-based data impact procedure that characterizes the forecast impact of every observation assimilated, and it allows the observation impacts to be partitioned by data type, geographic region, and vertical level. The impact cost function is the difference between HYCOM 48- and 72-h forecast errors computed for temperature and salinity at all model levels and grid points. It is shown that routine assimilation of large numbers of observations consistently reduces global HYCOM 48-h forecast errors for both temperature and salinity. The largest error reduction is due to the assimilation of temperature and salinity profiles from the tropical fixed mooring arrays, followed by Argo, expendable bathythermograph (XBT), and animal sensor data. On a per-observation basis, the most important global observing system is Argo. The beneficial impact of assimilating Argo temperature and salinity profiles extends to all depths sampled, with salinity impacts maximum at the surface and temperature impacts showing a subsurface maximum in the 100–200-m-depth range. The reduced impact of near-surface Argo temperature profile levels is due to the vertical covariances in the assimilation that extend the influence of the large number of sea surface temperature (SST) observations to the base of the mixed layer. Application of the adjoint-based data impact system to identify a data quality problem in a geostationary satellite SST observing system is also provided.

Naval Research Laboratory Contribution Number NRL/JA/7320-14-2049.

Corresponding author address: James A. Cummings, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Monterey, CA 93943. E-mail: james.cummings@nrlmry.navy.mil; ole.smedstad.ctr@nrlssc.navy.mil

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Abstract

The impact of the assimilation of ocean observations on reducing global Hybrid Coordinate Ocean Model (HYCOM) 48-h forecast errors is presented. The assessment uses an adjoint-based data impact procedure that characterizes the forecast impact of every observation assimilated, and it allows the observation impacts to be partitioned by data type, geographic region, and vertical level. The impact cost function is the difference between HYCOM 48- and 72-h forecast errors computed for temperature and salinity at all model levels and grid points. It is shown that routine assimilation of large numbers of observations consistently reduces global HYCOM 48-h forecast errors for both temperature and salinity. The largest error reduction is due to the assimilation of temperature and salinity profiles from the tropical fixed mooring arrays, followed by Argo, expendable bathythermograph (XBT), and animal sensor data. On a per-observation basis, the most important global observing system is Argo. The beneficial impact of assimilating Argo temperature and salinity profiles extends to all depths sampled, with salinity impacts maximum at the surface and temperature impacts showing a subsurface maximum in the 100–200-m-depth range. The reduced impact of near-surface Argo temperature profile levels is due to the vertical covariances in the assimilation that extend the influence of the large number of sea surface temperature (SST) observations to the base of the mixed layer. Application of the adjoint-based data impact system to identify a data quality problem in a geostationary satellite SST observing system is also provided.

Naval Research Laboratory Contribution Number NRL/JA/7320-14-2049.

Corresponding author address: James A. Cummings, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Monterey, CA 93943. E-mail: james.cummings@nrlmry.navy.mil; ole.smedstad.ctr@nrlssc.navy.mil

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Save
  • Andersson, E., and Sato Y. , 2012: Final report of the Fifth WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction. WMO World Weather Watch Tech. Rep. 2012-1, 25 pp. [Available online at http://www.wmo.int/pages/prog/www/OSY/Meetings/NWP5_Sedona2012/Final_Report.pdf.]

  • Baker, N., and Daley R. , 2000: Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Quart. J. Roy. Meteor. Soc., 126, 14311454, doi:10.1002/qj.49712656511.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., and Anderson D. L. T. , 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701 , doi:10.1029/2008GL035561.

    • Search Google Scholar
    • Export Citation
  • Bell, M. J., Lefèbvre M. , Le Traon P.-Y. , Smith N. , and Wilmer-Becker K. , 2009: GODAE: The Global Ocean Data Assimilation Experiment. Oceanography, 22, 1421, doi:10.5670/oceanog.2009.62.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., Takacs L. L. , Da Silva A. M. , and Ledvina D. , 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Quart. J. Roy. Meteor. Soc., 135, 239250, doi:10.1002/qj.366.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., Smith L. T. , Halliwell G. R. , and Bleck R. , 2003: North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 33, 25042526, doi:10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., DeSzoeke R. A. , Schlax M. G. , Naggar K. E. , and Siwertz N. , 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2011: Ocean data quality control. Operational Oceanography in the 21st Century, A. Schiller and G. B. Brassington, Eds., Springer, 91–121.

  • Cummings, J. A., and Smedstad O. M. , 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Vol. II, Springer-Verlag, 303–343.

  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Daley, R., and Barker E. , 2001: NAVDAS formulation and diagnostics. Mon. Wea. Rev., 129, 869883, doi:10.1175/1520-0493(2001)129<0869:NFAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fox, D. N., Teague W. J. , Barron C. N. , Carnes M. R. , and Lee C. M. , 2002: The Modular Ocean Data Assimilation System. J. Atmos. Oceanic Technol., 19, 240252, doi:10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Zhu Y. , 2009: Examination of observation impacts derives from observing system experiments (OSEs) and adjoint models. Tellus, 61A, 179193, doi:10.1111/j.1600-0870.2008.00388.x.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., and Coauthors, 2008a: Eddy-resolving global ocean prediction. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 353–381.

  • Hurlburt, H. E., Metzger E. J. , Hogan P. J. , Tilburg C. E. , and Shriver J. F. , 2008b: Steering of upper ocean currents and fronts by the topographically constrained abyssal circulation. Dyn. Atmos. Oceans, 45, 102134, doi:10.1016/j.dynatmoce.2008.06.003.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., Ota Y. , Miyoshi T. , and Liu J. , 2012: A simpler formulation of forecast sensitivity to observations: Application to ensemble Kalman filters. Tellus, 64A, 18 462 , doi:10.3402/tellusa.v64i0.18462.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., Spillane M. C. , McPhaden M. J. , and Harrison D. E. , 1996: Scales of variability in the equatorial Pacific inferred from the TAO buoy array. J. Climate, 9, 29993024, doi:10.1175/1520-0442(1996)009<2999:SOVITE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Langland, R., and Baker N. , 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, doi:10.1111/j.1600-0870.2004.00056.x.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., Mc Williams J. C. , and Doney S. C. , 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lea, D. J., Martin M. J. , and Oke P. R. , 2014: Demonstrating the complementarity of observations in an operational ocean forecasting system. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2281, in press.

    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2013: Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Sci., 9, 5781, doi:10.5194/os-9-57-2013.

    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., Hurlburt H. E. , Wallcraft A. J. , Shriver J. F. , Smedstad L. F. , Smedstad O. M. , Thoppil P. , and Franklin D. S. , 2008: Validation test report for the Global Ocean Prediction System V3.0 – ° HYCOM/NCODA: Phase I. NRL Memo. Rep. NRL/MR/7320‒08-9148, 82 pp. [Available online at http://www7320.nrlssc.navy.mil/pubs/2008/metzger-2008.pdf.]

  • Metzger, E. J., and Coauthors, 2010: Validation test report for the Global Ocean Forecast System V3.0 – ° HYCOM/NCODA: Phase II. NRL Memo. Rep. NRL/MR/7320‒10-9236, 70 pp. [Available online at http://www7320.nrlssc.navy.mil/pubs/2010/metzger1-2010.pdf.]

  • Metzger, E. J., and Coauthors, 2014: U.S. Navy Operational Global Ocean and Arctic Ice Prediction Systems. Oceanography, in press.

  • Moore, A. M., Arango H. G. , Broquet G. , Powell B. S. , Weaver A. T. , and Zavala-Garay J. , 2011a: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part I—System overview and formulation. Prog. Oceanogr., 91, 3449, doi:10.1016/j.pocean.2011.05.004.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and Coauthors, 2011b: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part III—Observation impact and observation sensitivity in the California Current system. Prog. Oceanogr., 91, 7495, doi:10.1016/j.pocean.2011.05.005.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and Schiller A. , 2007: Impact of Argo, SST, and altimeter data on an eddy-resolving ocean reanalysis. Geophys. Res. Lett.,34, L19601, doi:10.1029/2007GL031549.

  • Ota, Y., Derber J. C. , Kalnay E. , and Miyoshi T. , 2013: Ensemble-based observation impact estimates using the NCEP GFS. Tellus,65A, 20038, doi:10.3402/tellusa.v65i0.20038.

  • Rabier, F., Klinker E. , Courtier P. , and Hollingsworth A. , 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122, 121150, doi:10.1002/qj.49712252906.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 980 348 34
PDF Downloads 749 245 28