• Accadia, C., , Zecchetto S. , , Lavagnini A. , , and Speranza A. , 2007: Comparison of 10-m wind forecasts from a regional area model and QuikSCAT scatterometer wind observations over the Mediterranean Sea. Mon. Wea. Rev., 135, 19461960, doi:10.1175/MWR3370.1.

    • Search Google Scholar
    • Export Citation
  • Amador, J. A., 2008: The Intra-Americas sea low-level jet. Ann. N. Y. Acad. Sci., 1146, 153188, doi:10.1196/annals.1446.012.

  • Barthelmie, R. J., 1999: Monitoring offshore wind and turbulence characteristics in Denmark. Wind Energy 1999: Proceedings of the 21st British Wind Energy Association Conference, P. Hinson, Ed., Professional Engineering Publishing, 311321.

  • Bentamy, A., , Grodsky S. A. , , Chapron B. , , and Carton J. A. , 2013: Compatibility of C- and Ku-band scatterometer winds: ERS-2 and QuikSCAT. J. Mar. Syst., 117–118, 72–80, doi:10.1016/j.jmarsys.2013.02.008.

    • Search Google Scholar
    • Export Citation
  • Bolaños-Sanchez, R., , Sanchez-Arcilla A. , , and Cateura J. , 2007: Evaluation of two atmospheric models for wind–wave modelling in the NW Mediterranean. J. Mar. Syst.,65, 336–353, doi:10.1016/j.jmarsys.2005.09.014.

  • Boukhanovsky, A. V., , Lopatouhkin L. J. , , and Guedes Soares C. , 2007: Spectral wave climate of the North Sea. Appl. Ocean Res., 29, 146154, doi:10.1016/j.apor.2007.08.004.

    • Search Google Scholar
    • Export Citation
  • Breckling, J., 1989: The Analysis of Directional Time Series: Applications to Wind Speed and Direction. Lecture Notes in Statistics, Springer-Verlag, Vol. 61, 238 pp.

  • Buell, C. E., 1963: Comments on variability shown by hourly wind soundings and other comments. J. Appl. Meteor., 2, 809811, doi:10.1175/1520-0450(1963)002<0810:COSBHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caires, S., , and Sterl A. , 2003: Validation of ocean wind and wave data using triple collocation. J. Geophys. Res., 108, 3098, doi:10.1029/2002JC001491.

    • Search Google Scholar
    • Export Citation
  • Caires, S., , Sterl A. , , Bidlot J.-R. , , Graham N. , , and Swail V. , 2004: Intercomparison of different wind–wave reanalyses. J. Climate, 17, 18931913, doi:10.1175/1520-0442(2004)017<1893:IODWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cardone, V. J., , Graber H. C. , , Jensen P. E. , , Hasselmann S. , , and Caruso M. J. , 1995: In search of the true surface wind field in SWADE IOP-1: Ocean wave modelling perspective. Global Atmos. Ocean Syst., 3, 107150.

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., , and Sclavo M. , 2006: The calibration of wind and wave model data in the Mediterranean Sea. Coastal Eng., 53, 613627, doi:10.1016/j.coastaleng.2005.12.006.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , and Wentz F. J. , 1986: Further development of an improvement altimeter wind speed algorithm. J. Geophys. Res., 91, 14 25014 260, doi:10.1029/JC091iC12p14250.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , and Freilich M. H. , 2005: Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Mon. Wea. Rev., 133, 409429, doi:10.1175/MWR-2861.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, G., 2000: Impacts of the collocation window on the accuracy of altimeter/buoy wind speed comparison—A simulation study. Proc. 19th ISPRS Congress, Amsterdam, Netherlands, ISPRS, 112–118. [Available online at http://www.isprs.org/proceedings/XXXIII/congress/part2/112_XXXIII-part2.pdf/]

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., , Xu Q. , , Liu Y. , , Lin H. , , Xiu P. , , Yin X. , , Zong H. , , and Rong Z. , 2008: An analytical algorithm with a wave age factor for altimeter wind speed retrieval. Int. J. Remote Sens., 29, 56995716, doi:10.1080/01431160801908111.

    • Search Google Scholar
    • Export Citation
  • Chin, T. M., , Milliff R. F. , , and Large W. G. , 1998: Basin-scale, high wavenumber, sea surface wind fields from a multiresolution analysis of scatterometer data. J. Atmos. Oceanic Technol., 15, 741763, doi:10.1175/1520-0426(1998)015<0741:BSHWSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, P. C., , Qi Y. , , Chen Y. , , Shi P. , , and Mao Q. , 2004: South China Sea wind-wave characteristics. Part I: Validation of Wavewatch-III using TOPEX/Poseidon data. J. Atmos. Oceanic Technol., 21, 17181733, doi:10.1175/JTECH1661.1.

    • Search Google Scholar
    • Export Citation
  • Cox, A. T., , and Swail V. R. , 2001: A global wave hindcast over the period 1958–1997: Validation and climate assessment. J. Geophys. Res., 106, 23132329, doi:10.1029/2001JC000301.

    • Search Google Scholar
    • Export Citation
  • Crosby, D. S., , Breaker L. C. , , and Gemmill W. H. , 1990: A definition for vector correlation and its application to marine surface winds. National Meteorological Center Office Note 365, NOAA/National Weather Service, 50 pp.

    • Search Google Scholar
    • Export Citation
  • Crosby, D. S., , Breaker L. C. , , and Gemmill W. H. , 1993: A proposed definition for vector correlation in geophysics: Theory and application. J. Atmos. Oceanic Technol., 10, 355367, doi:10.1175/1520-0426(1993)010<0355:APDFVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Derber, D., , Parrish F. , , and Lord S. J. , 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6, 538547, doi:10.1175/1520-0434(1991)006<0538:TNGOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dodet, G., , Bertin X. , , and Taborda R. , 2010: Wave climate variability in the north-east Atlantic Ocean over the last six decades. Ocean Modell., 31, 120131, doi:10.1016/j.ocemod.2009.10.010.

    • Search Google Scholar
    • Export Citation
  • Draper, D. W., , and Long D. G. , 2004: Evaluating the effect of rain on SeaWinds scatterometer measurements. J. Geophys. Res., 109, C02005, doi:10.1029/2002JC001741.

    • Search Google Scholar
    • Export Citation
  • Durrant, T. H., , and Greenslade D. J. M , 2011: Evaluation and implementation of AUSWAVE. CAWCR Tech. Rep. 41, 56 pp.

  • Durrant, T. H., , Greenslade J. M. , , and Simmonds I. , 2013: The effect of statistical wind corrections on global wave forecasts. Ocean Modell., 70, 116131, doi:10.1016/j.ocemod.2012.10.006.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., , Graber H. C. , , and Caruso M. J. , 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19, 20492062, doi:10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Essenwanger, O. M., 1986: General Climatology: Elements of Statistical Analysis. World Survey of Climatology Series, Vol. 1 B, Elsevier, 442 pp.

  • Feng, H., , Vandemark D. , , Quilfen Y. , , Chapron B. , , and Becley B. , 2006: Assessment of wind-forcing impact on a global wind-wave model using the TOPEX altimeter. Ocean Eng., 33, 14311461, doi:10.1016/j.oceaneng.2005.10.015.

    • Search Google Scholar
    • Export Citation
  • Fisher, N. I., 1993: Statistical Analysis of Circular Data. Cambridge University Press, 277 pp.

  • Freilich, M., , and Challenor P. , 1994: A new approach for determining fully empirical altimeter wind speed model functions. J. Geophys. Res., 99, 25 05125 062, doi:10.1029/94JC01996.

    • Search Google Scholar
    • Export Citation
  • Fu, L. L., , Christensen E. J. , , Yamarone C. A. , , Lefebvre M. , , Menard Y. , , and Escudier P. , 1994: TOPEX–POSEIDON mission overview. J. Geophys. Res., 99, 24 36924 381, doi:10.1029/94JC01761.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge Atmospheric and Space Science Series, Cambridge University Press, 316 pp.

  • Gourrion, J., , Vandemark D. , , Bailey S. , , Chapron B. , , Gommenginger C. P. , , Challenor P. G. , , and Srokosz M. A. , 2002: A two-parameter wind speed algorithm for Ku-band altimeters. J. Atmos. Oceanic Technol., 19, 20302048, doi:10.1175/1520-0426(2002)019<2030:ATPWSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gower, J. F. R., 1996: Intercalibration of wave and wind data from TOPEX/POSEIDON and moored buoys off the west coast of Canada. J. Geophys. Res., 101, 38173829, doi:10.1029/95JC03281.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institut Rep., Ergänzungsheft 8-12, 95 pp.

  • Hasselmann, S., , Hasselmann K. , , Allender J. H. , , and Barnett T. P. , 1985: Computations and parameterizations of the linear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear transfer for application in wave models. J. Phys. Oceanogr., 15, 13781391, doi:10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hwang, P., , Teague W. , , Jacobs G. , , and Wang D. , 1998: A statistical comparison of wind speed, wave height and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophys. Res., 103, 10 45110 468, doi:10.1029/98JC00197.

    • Search Google Scholar
    • Export Citation
  • Jupp, P. E., , and Mardia K. V. , 1980: A general correlation coefficient for directional data and related regression problems. Biometrika, 67, 163173, doi:10.1093/biomet/67.1.163.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., , Wallcraft A. J. , , Martin P. J. , , and Pauley R. L. , 2009: Optimizing surface winds using QuikSCAT measurements in the Mediterranean Sea during 2000-2006. J. Mar. Syst., 78, S119–S131, doi:10.1016/j.jmarsys.2009.01.020.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, P., , and Weber R. O. , 1998: Directional correlation coefficient for channeled flow and application to wind data over complex terrain. J. Atmos. Oceanic Technol., 15, 8997, doi:10.1175/1520-0426(1998)015<0089:DCCFCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., , Cavaleri L. , , Donelan M. , , Hasselmann K. , , Hasselmann S. , , and Janssen P. A. E. M. , 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

  • Lefevre, J., , Barckicke J. , , and Ménard Y. , 1994: A significant wave height dependent function for TOPEX/Poseidon wind speed retrieval. J. Geophys. Res., 99, 25 03525 046, doi:10.1029/94JC01958.

    • Search Google Scholar
    • Export Citation
  • Leroux, Y. H., , Richaume K. P. , , and Berthelot B. , 2011: Estimating SMOS error structure using triple collocation. Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2427, doi:10.1109/IGARSS.2011.6048888.

  • Liu, W. T., , and Tang W. , 1996: Equivalent neutral wind. NASA, JPL Publ. 96-17, 85 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970010322.pdf.]

  • Lungu, T., Ed., 2006: QuikSCAT science data product user’s manual: Overview and geophysical data products. D-18053-Rev A, version 3.0, Jet Propulsion Laboratory, 91 pp.

  • McNoldy, B. D., , Ciesielski P. E. , , Shubert W. H. , , and Johnson R. H. , 2004: Surface winds, divergence, and vorticity in stratocumulus regions using QuikSCAT and reanalysis winds. Geophys. Res. Lett., 31, L08105, doi:10.1029/2004GL019768.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , Smith D. K. , , and Wents F. J. , 2001: Comparison of Special Sensor Microwave Imager and buoy-measured wind speeds from 1987 to 1997. J. Geophys. Res., 106, 11 719–11 729, doi:10.1029/1999JC000097.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., , Smith D. , , and Wentz F. , 2001: A 10 year intercomparison between collocated Special Sensor Microwave Imager oceanic surface wind speed retrievals and global analyses. J. Geophys. Res.,106, 11731–11 742, doi:10.1029/1999JC000098.

  • Mesa García, J. C., 2009: Methodology for time series reanalysis of ocean waves in the Caribbean Sea (in Spanish). M.S. thesis, Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, 114 pp. [Available online at http://www.bdigital.unal.edu.co/1939/1/71291081.2010.pdf.]

  • Milliff, R. F., , Large W. G. , , Morzel J. , , Danabasoglu G. , , and Chin T. M. , 1999: Ocean general circulation model sensitivity to forcing from scatterometer winds. J. Geophys. Res.,104, 11 337–11 358, doi:10.1029/1998JC900045.

  • Milliff, R. F., , Morzel J. , , Chelton D. B. , , and Freilich M. H. , 2004: Wind stress curl and wind stress divergence biases from rain effects on QSCAT surface wind retrievals. J. Atmos. Oceanic Technol., 21, 12161231, doi:10.1175/1520-0426(2004)021<1216:WSCAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minguez, R., , Espejo A. , , Tomaz A. , , Mendez F. J. , , and Losada I. J. , 2011: Directional calibration of wave reanalysis databases using instrumental data. J. Atmos. Oceanic Technol.,28, 14661485, doi:10.1175/JTECH-D-11-00008.1.

    • Search Google Scholar
    • Export Citation
  • Montoya, R. D., 2013: Study of the interactions between large scale climate phenomena and waves in the Caribbean Sea: Methodologies to correct wind speed during average and hurricane conditions for wave climate analysis. Ph.D. thesis, Univerisidad Nacional de Colombia, 340 pp.

  • Moore, G. W. K., , and Renfrew I. A. , 2002: An assessment of surface turbulent heat fluxes from NCEP/NCAR reanalysis over the western boundary currents. J. Climate, 15, 20202037, doi:10.1175/1520-0442(2002)015<2020:AAOTST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osorio, A. F., , Montoya R. , , Mesa J. C. , , and Bernal G. R. , 2009: Forty years of wave hindcasting using Wave Watch III model and calibration with several data sources at the Caribbean Sea (in Spanish). Bol. Cient. - Cent. Invest. Oceanogr. Hidrogr., 27, 3756.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., , and Derber J. C. , 1992: The National Meteorological Center’s spectral statistical interpolation analysis system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and , Oort A. H. , 1992: Physics of Climate. Springer, 520 pp.

  • Pensieri, S., , Bozzano R. , , and Schiano M. E. , 2010: Comparison between QuikSCAT and buoy wind data in the Ligurian Sea. J. Mar. Syst., 81, 286296, doi:10.1016/j.jmarsys.2010.01.004.

    • Search Google Scholar
    • Export Citation
  • Pickett, M. H., , Tang W. , , Rosenfeld L. K. , , and Wash C. H. , 2003: QuikSCAT satellite comparisons with nearshore buoy wind data off the U.S. West Coast. J. Atmos. Oceanic Technol., 20, 18691879, doi:10.1175/1520-0426(2003)020<1869:QSCWNB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pilar, P., , Soares C. G. , , and Carretero J. C. , 2008: 44-year wave hindcast for the north east Atlantic European coast. Coastal Eng., 55, 861871, doi:10.1016/j.coastaleng.2008.02.027.

    • Search Google Scholar
    • Export Citation
  • Reguero, B., , Menéndez M. , , Méndez F. , , Minguez R. , , and Losada I. , 2012: A global ocean wave (GOW) calibrated reanalysis from 1948 onwards. Coastal Eng., 65, 3855, doi:10.1016/j.coastaleng.2012.03.003.

    • Search Google Scholar
    • Export Citation
  • Robinson, I., 2004: Measuring the Oceans from Space. Springer-Praxis, 669 pp.

  • Rogers, E. W., , and Wittmann P. A. , 2002: Quantifying the role of wind field accuracy in the U.S. Navy’s global ocean wave nowcast/forecast system. Naval Research Lab Tech. Rep. NRL/MR/732-02-8290, 29 pp.

  • Ruti, P. M., , Marullo S. , , D’Ortenzio S. , , and Tremant M. , 2008: Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the Mediterranean basin: Analyses, QuikSCAT and buoy data. J. Mar. Syst., 70, 3348, doi:10.1016/j.jmarsys.2007.02.026.

    • Search Google Scholar
    • Export Citation
  • Scipal, K., , Dorigo W. , , and de Jeu R. , 2010: Triple collocation—A new tool to determine the error structure of global soil moisture products. Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 44264429, 10.1109/IGARSS.2010.5652128.

  • Simionato, C. G., , Meccia V. L. , , Dragani W. C. , , and Nuñez M. N. , 2006: On the use of the NCEP/NCAR surface winds for modeling barotropic circulation in the Río de la Plata estuary. Estuarine Coastal Shelf Sci., 70, 195206, doi:10.1016/j.ecss.2006.05.047.

    • Search Google Scholar
    • Export Citation
  • Smedman, A. S., , Hogstrom U. , , and Bergstrom H. , 1997: Evolution of stable internal boundary layers over a cold sea. J. Geophys. Res., 102, 10911099, doi:10.1029/96JC02782.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., , Legler D. M. , , and Verzone K. V. , 2001: Quantifying uncertainties in NCEP reanalysis using high-quality research vessel observations. J. Climate, 14, 40624072, doi:10.1175/1520-0442(2001)014<4062:QUINRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soukissian, T., , and Kechris C. , 2007: About applying linear structural method on ocean data: Adjustment of satellite wave data. Ocean Eng., 34, 371389, doi:10.1016/j.oceaneng.2006.04.002.

    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., , Cheung K. F. , , Tolman H. L. , , and Chawla A. , 2013: Patterns and cycles in the Climate Forecast System reanalysis wind and wave data. Ocean Modell., 70, 207220, doi:10.1016/j.ocemod.2012.10.005.

    • Search Google Scholar
    • Export Citation
  • Swail, V. R., , and Cox A. T. , 2000: On the use of NCEP–NCAR reanalysis surface marine wind fields for a long-term North Atlantic wave hindcast. J. Atmos. Oceanic Technol., 17, 532545, doi:10.1175/1520-0426(2000)017<0532:OTUONN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2002: User manual and system documentation of WAVEWATCH III version 2.22. Tech. Note 222, NOAA/NWS/NCEP/MMAB, 133 pp.

  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH III version 3.14. NOAA/NWS/NCEP/MMAB Tech. Note 276, 194 pp. [Available online at http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf.]

  • Tolman, H. L., , and Chalikov D. , 1996: Source terms in a third-generation wind-wave model. J. Phys. Oceanogr., 26, 24972518, doi:10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tomas, A., 2009: Calibration methodologies of wave reanalysis data bases (in Spanish). Ph.D. thesis, Universidad de Cantabria, 310 pp.

  • Van Wijk, A. J. M., , Beljaars A. C. M. , , Holtslag A. A. M. , , and Turkenburg W. C. , 1990: Evaluation of stability corrections in wind speed profiles over the North Sea. J. Wind Eng. Ind. Aerodyn., 33, 551566, doi:10.1016/0167-6105(90)90007-Y.

    • Search Google Scholar
    • Export Citation
  • Weisse, R., , and Günther H. , 2007: Wave climate and long-term changes for the southern North Sea obtained from a high-resolution hindcast 1958-2002. Ocean Dyn., 57, 161172, doi:10.1007/s10236-006-0094-x.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., , Bourassa M. A. , , and Tongue J. , 2002: Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19, 738746, doi:10.1175/1520-0426(2002)019<0738:EORRAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witter, D., , and Chelton D. , 1991: A Geosat altimeter wind speed algorithm and a method for altimeter wind speed algorithm development. J. Geophys. Res., 96, 88538860, doi:10.1029/91JC00414.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1993: An estimate of Geosat altimeter wind speed algorithm at high wind speeds. J. Geophys. Res., 98, 20 27520 285, doi:10.1029/93JC02117.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 11
PDF Downloads 22 22 12

Methodology to Correct Wind Speed during Average Wind Conditions: Application to the Caribbean Sea

View More View Less
  • 1 Programa de Ingeniería Civil, Universidad de Medellín, and Grupo de Investigación en Oceanografía e Ingeniería Costeras, Universidad Nacional de Colombia, Medellín, Colombia
  • 2 Grupo de Investigación en Oceanografía e Ingeniería Costeras, Universidad Nacional de Colombia, Medellín, Colombia
© Get Permissions
Restricted access

Abstract

The spatial and temporal variability of ocean wind waves plays an important role in many engineering and environmental problems. Although research in this area has been improved in recent decades thanks to the emergence of satellite data, in many cases this information does not have the appropriate resolution for more detailed and local research. In view of this, reanalysis data developed by several meteorological agencies have appeared as a good alternative to force the most popular ocean wind-wave models. Thus, to achieve more accuracy in the data, the 60-yr Global Atmospheric Reanalysis 1 carried out by the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) has been corrected, employing the vector correlation and triple collocation theories combined with information from different accurate sources. The comparison of wind speed with satellite and in situ buoy data before correction reveals an important underestimation for areas near the Colombian coast. The wind speed root-mean-square error (RMSE) between corrected data and satellite measurements at locations near the Colombian Caribbean coast without calibration is 3.8 m s−1, while for corrected data it is 2.0 m s−1, showing a decrease in the RMSE of almost 47%. For significant wave height for buoy 41194 (Barranquilla, Colombia), the RMSE between the modeled data and measurements without correction is 0.99 m, while for the corrected data it is 0.40 m, showing a decrease in the RMSE of almost 55%. The results obtained clearly show an increase in the accuracy of the calibrated wind speed.

Corresponding author address: Rubén Darío Montoya Ramírez, Programa de Ingeniería Civil, Universidad de Medellin, Carrera 87 N° 30-65 (Bloque 4), Medellín, Colombia. E-mail: rmontoya@udem.edu.co

Abstract

The spatial and temporal variability of ocean wind waves plays an important role in many engineering and environmental problems. Although research in this area has been improved in recent decades thanks to the emergence of satellite data, in many cases this information does not have the appropriate resolution for more detailed and local research. In view of this, reanalysis data developed by several meteorological agencies have appeared as a good alternative to force the most popular ocean wind-wave models. Thus, to achieve more accuracy in the data, the 60-yr Global Atmospheric Reanalysis 1 carried out by the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) has been corrected, employing the vector correlation and triple collocation theories combined with information from different accurate sources. The comparison of wind speed with satellite and in situ buoy data before correction reveals an important underestimation for areas near the Colombian coast. The wind speed root-mean-square error (RMSE) between corrected data and satellite measurements at locations near the Colombian Caribbean coast without calibration is 3.8 m s−1, while for corrected data it is 2.0 m s−1, showing a decrease in the RMSE of almost 47%. For significant wave height for buoy 41194 (Barranquilla, Colombia), the RMSE between the modeled data and measurements without correction is 0.99 m, while for the corrected data it is 0.40 m, showing a decrease in the RMSE of almost 55%. The results obtained clearly show an increase in the accuracy of the calibrated wind speed.

Corresponding author address: Rubén Darío Montoya Ramírez, Programa de Ingeniería Civil, Universidad de Medellin, Carrera 87 N° 30-65 (Bloque 4), Medellín, Colombia. E-mail: rmontoya@udem.edu.co
Save