• Ablain, M., , Cazenave A. , , Valladeau G. , , and Guinehut S. , 2009: A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci., 5,193201, doi:10.5194/os-5-193-2009.

    • Search Google Scholar
    • Export Citation
  • Brown, S., , Desai S. , , Keihm S. , , and Lu W. , 2009: Microwave radiometer calibration on decadal time scales using on-Earth brightness temperature references: Application to the TOPEX Microwave Radiometer. J. Atmos. Oceanic Technol., 26, 25792591, doi:10.1175/2009JTECHA1305.1.

    • Search Google Scholar
    • Export Citation
  • Buhlmann, P., 1996: Confidence regions for trends in time series: A simultaneous approach with a sieve bootstrap. University of California, Berkeley, Department of Statistics, Rep. 447, 27 pp. [Available online at http://statistics.berkeley.edu/tech-reports/447.]

  • Dai, A., , Wang J. , , Ware R. H. , , and Hove T. V. , 2002: Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Res., 107 (D10), doi:10.1029/2001JD000642.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Eymard, L., , Obligis E. , , Tran N. , , Karbou F. , , and Dedieu M. , 2005: Long-term stability of ERS-2 and TOPEX Microwave Radiometer in-flight calibration. IEEE Trans. Geosci. Remote Sens., 43, 11441158, doi:10.1109/TGRS.2005.846129.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., , and Cazenave A. , 2000: Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. Academic Press, 463 pp.

  • Janssen, P. E. M., , Abdalla S. , , Hersbach H. , , and Bidlot J.-R. , 2007: Error estimation of buoy, satellite, and model wave height data. J. Atmos. Oceanic Technol., 24, 16651677, doi:10.1175/JTECH2069.1.

    • Search Google Scholar
    • Export Citation
  • Keihm, S. J., , Janssen M. A. , , and Ruf C. S. , 1995: TOPEX/Poseidon Microwave Radiometer (TMR): III. Wet troposphere range correction algorithm and pre-launch error budget. IEEE Trans. Geosci. Remote Sens., 33, 147161, doi:10.1109/36.368213.

    • Search Google Scholar
    • Export Citation
  • Keihm, S. J., and Coauthors, 2009: Ocean water vapor and cloud liquid water trends from 1992 to 2005 TOPEX Microwave Radiometer data. J. Geophys. Res., 114, D18101, doi:10.1029/2009JD012145.

    • Search Google Scholar
    • Export Citation
  • Mieruch, S., , Noël S. , , Bovensmann H. , , and Burrows J. P. , 2008: Analysis of global water vapour trends from satellite measurements in the visible spectral range. Atmos. Chem. Phys., 8, 491504, doi:10.5194/acp-8-491-2008.

    • Search Google Scholar
    • Export Citation
  • Obligis, E., , Eymard L. , , Tran N. , , Labroue S. , , and Femenias P. , 2006: First three years of the microwave radiometer aboard Envisat: In-flight calibration, processing, and validation of the geophysical products. J. Atmos. Oceanic Technol., 23,802814, doi:10.1175/JTECH1878.1.

    • Search Google Scholar
    • Export Citation
  • Obligis, E., , Eymard L. , , and Tran N. , 2007: A new sidelobe correction algorithm for microwave radiometers: Application to the Envisat instrument. IEEE Trans. Geosci. Remote Sens.,45, 602–612, doi:10.1109/TGRS.2006.887165.

  • Obligis, E., , Rahmani A. , , Eymard L. , , Labroue S. , , and Bronner E. , 2009: An improved retrieval algorithm for water vapor retrieval: Application to the Envisat Microwave Radiometer. IEEE Trans. Geosci. Remote Sens., 47, 30573064, doi:10.1109/TGRS.2009.2020433.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., , and Cavalieri D. J. , 2012: Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 871880, doi:10.5194/tc-6-871-2012.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , Fasullo J. , , and Smith L. , 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758, doi:10.1007/s00382-005-0017-4.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , and Meissner T. , 2007: Supplement 1: Algorithm theoretical basis document for AMSR-E ocean algorithms. RSS Tech. Rep. 051707, 6 pp.

  • Wentz, F. J., , Gentemann C. , , and Ashcroft P. , 2003: On-orbit calibration of AMSR-E and the retrieval of ocean products. Extended Abstracts, 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., P5.9. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_56760.htm.]

  • Zlotnicki, V., , and Desai S. , 2004: Assessment of the Jason microwave radiometer’s measurement of the wet tropospheric path delay using comparisons to SSM/I and TMI. Mar. Geod., 27,241253, doi:10.1080/01490410490465625.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 25
PDF Downloads 33 33 19

Trend and Variability of the Atmospheric Water Vapor: A Mean Sea Level Issue

View More View Less
  • 1 CLS, Ramonville Saint-Agne, France
  • 2 LOCEAN/CNRS, Paris, France
  • 3 CLS, Ramonville Saint-Agne, France
© Get Permissions
Restricted access

Abstract

The wet tropospheric path delay is presently the main source of error in the estimation of the mean sea level by satellite altimetry. This correction on altimetric measurements, provided by a dedicated radiometer aboard the satellite, directly depends on the atmospheric water vapor content. Nowadays, water vapor products from microwave radiometers are rather consistent but important discrepancies remain. Understanding these differences can help improve the retrieval of water vapor and reduce at the same time the error on the mean sea level.

Three radiometers are compared: the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), Jason-1 microwave radiometer (JMR), and Envisat microwave radiometer (MWR). Water vapor products are analyzed both in terms of spatial and temporal distribution over the period 2004–10, using AMSR-E as a reference. The Interim ECMWF Re-Analysis (ERA-Interim) data are also included in the study as an additional point of comparison. Overall, the study confirms the general good agreement between the radiometers: similar patterns are observed for the spatial distribution of water vapor and the correlation of the times series is better than 0.90. However, regional discrepancies are observed and a quantitative agreement on the trend is not obtained. Regional discrepancies are driven by the annual cycle. The JMR product shows discrepancies are highly dependent on water vapor, which might be related to calibration issues. Furthermore, triple collocation analysis suggests a possible drift of JMR. MWR discrepancies are located in coastal regions and follow a seasonal dynamic with stronger differences in summer. It may result from processing of the brightness temperatures.

Corresponding author address: Soulivanh Thao, CLS, Spatial Oceanography, 8-10 rue Hermes, Ramonville Saint-Agne 31400, France. E-mail: sthao@cls.fr

Abstract

The wet tropospheric path delay is presently the main source of error in the estimation of the mean sea level by satellite altimetry. This correction on altimetric measurements, provided by a dedicated radiometer aboard the satellite, directly depends on the atmospheric water vapor content. Nowadays, water vapor products from microwave radiometers are rather consistent but important discrepancies remain. Understanding these differences can help improve the retrieval of water vapor and reduce at the same time the error on the mean sea level.

Three radiometers are compared: the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), Jason-1 microwave radiometer (JMR), and Envisat microwave radiometer (MWR). Water vapor products are analyzed both in terms of spatial and temporal distribution over the period 2004–10, using AMSR-E as a reference. The Interim ECMWF Re-Analysis (ERA-Interim) data are also included in the study as an additional point of comparison. Overall, the study confirms the general good agreement between the radiometers: similar patterns are observed for the spatial distribution of water vapor and the correlation of the times series is better than 0.90. However, regional discrepancies are observed and a quantitative agreement on the trend is not obtained. Regional discrepancies are driven by the annual cycle. The JMR product shows discrepancies are highly dependent on water vapor, which might be related to calibration issues. Furthermore, triple collocation analysis suggests a possible drift of JMR. MWR discrepancies are located in coastal regions and follow a seasonal dynamic with stronger differences in summer. It may result from processing of the brightness temperatures.

Corresponding author address: Soulivanh Thao, CLS, Spatial Oceanography, 8-10 rue Hermes, Ramonville Saint-Agne 31400, France. E-mail: sthao@cls.fr
Save