• Ahmad, S. R., , and Iles A. , 2001: Pre-resonance Raman excitation profile of the 3400 cm−1 mode of liquid water. J. Raman Spectrosc., 32, 649655, doi:10.1002/jrs.717.

    • Search Google Scholar
    • Export Citation
  • Arshinov, Y. F., , Bobrovnikov S. M. , , Nadeev A. I. , , Serikov I. B. , , Kim D. , , Cha H. , , and Song K. , 2002: Observation of range-resolved rovibrational Raman spectra of water in clean air and in a cloud with a 32-spectral-channel Raman lidar. Lidar Remote Sensing in Atmospheric and Earth Sciences: Reviewed and Revised Papers Presented at the Twenty-First International Laser Radar Conference, Valcarier, 31–34.

  • Auer, A. H., Jr., , and Veal D. L. , 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, doi:10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Avila, G., , Fernández J. M. , , Maté B. , , Tejeda G. , , and Montero S. , 1999: Ro-vibrational Raman cross sections of water vapor in the OH stretching region. J. Mol. Spectrosc., 196, 7792, doi:10.1006/jmsp.1999.7854.

    • Search Google Scholar
    • Export Citation
  • Aymoz, G., , Jaffrezo J.-L. , , Jacob V. , , Colomb A. , , and George C. , 2004: Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps. Atmos. Chem. Phys., 4, 24992512, doi:10.5194/acp-4-2499-2004.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., 1997: Cloud microphysics and climate. Science, 276, 10721078, doi:10.1126/science.276.5315.1072.

  • Baustian, K. J., , Cziczo D. J. , , Wise M. E. , , Pratt K. A. , , Kulkarni G. , , Hallar A. G. , , and Tolbert M. A. , 2012: Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach. J. Geophys. Res.,117, D06217, doi:10.1029/2011JD01678.

  • Cavalli, F., and Coauthors, 2004: Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. J. Geophys. Res.,109, D24215, doi:10.1029/2004JD005137.

  • Chen, W.-T., , Woods C. P. , , Li J.-L. F. , , Waliser D. E. , , Chern J.-D. , , Tao W.-K. , , Jiang J. H. , , and Tompkins A. M. , 2011: Partitioning CloudSat ice water content for comparison with upper tropospheric ice in global atmospheric models. J. Geophys. Res.,116, D19206, doi:10.1029/2010JD015179.

  • Cheng, A., , Xu K.-M. , , Hu Y. , , and Kato S. , 2012: Impact of a cloud thermodynamic phase parameterization based on CALIPSO observations on climate simulation. J. Geophys. Res.,117, D09103, doi:10.1029/2011JD017263.

  • D’Arrigo, G., , Maisano G. , , Mallamace F. , , Migliardo P. , , and Wanderlingh F. , 1981: Raman scattering and structure of normal and supercooled water. J. Chem. Phys., 75, 42644270, doi:10.1063/1.442629.

    • Search Google Scholar
    • Export Citation
  • Faris, G. W., , and Copeland R. A. , 1997: Wavelength dependence of the Raman cross section for liquid water. Appl. Opt., 36, 26862688, doi:10.1364/AO.36.002686.

    • Search Google Scholar
    • Export Citation
  • Gabrichidze, Z. A., 1965: Study of the Raman spectra of water, saturated aqueous solutions of electrolytes, and ice. Opt. Spectrosc., 19, 319322.

    • Search Google Scholar
    • Export Citation
  • Groß, S., , Tesche M. , , Freudenthaler V. , , Toledano C. , , Wiegner M. , , Ansmann A. , , Althausen D. , , and Seefeldner M. , 2011: Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus, 63B, 706724, doi:10.1111/j.1600-0889.2011.00556.x.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , Winker D. , , and van Zadelhoff G.-J. , 2005: Extinction-ice water content-effective radius algorithms for CALIPSO. Geophys. Res. Lett.,32, L10807, doi:10.1029/2005GL022742.

  • Immler, F., , Engelbart D. , , and Schrems O. , 2005: Fluorescence from atmospheric aerosol detected by a lidar indicates biogenic particles in the lowermost stratosphere. Atmos. Chem. Phys., 5, 345355, doi:10.5194/acp-5-345-2005.

    • Search Google Scholar
    • Export Citation
  • Ivleva, N. P., , McKeon U. , , Niessner R. , , and Pöschl U. , 2007: Raman microspectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI: Soot, humic-like substances, and inorganic compounds. Aerosol Sci. Technol., 41, 655671, doi:10.1080/02786820701376391.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , Baik S. , , Cha H. , , Kim Y. , , and Song I. , 2009: Lidar measurement of a full Raman spectrum of water by using a multichannel detector. J. Korean Phys. Soc., 54, 3843, doi:10.3938/jkps.54.38.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , Isaac G. A. , , Mazin I. P. , , and Barker H. W. , 2001: Microphysical properties of continental clouds from in situ measurements. Quart. J. Roy. Meteor. Soc., 127, 21172151, doi:10.1002/qj.49712757614.

    • Search Google Scholar
    • Export Citation
  • Liu, S., and Coauthors, 2012: Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield. J. Geophys. Res.,117, D00V26, doi:10.1029/2012JD018170.

  • Melfi, S. H., , Evans K. D. , , Li J. , , Whiteman D. , , Ferrare R. , , and Schwemmer G. , 1997: Observation of Raman scattering by cloud droplets in the atmosphere. Appl. Opt., 36, 35513559, doi:10.1364/AO.36.003551.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , and Arnott W. P. , 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51, 817832, doi:10.1175/1520-0469(1994)051<0817:AMPTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Müller, D., , Mattis I. , , Wandinger U. , , Ansmann A. , , Althausen D. , , Dubovik O. , , Eckhardt S. , , and Stohl A. , 2003: Saharan dust over a central European EARLINET-AERONET site: Combined observations with Raman lidar and sun photometer. J. Geophys. Res.,108, 4345, doi:10.1029/2002JD002918.

  • Murphy, W. F., 1978: The rovibrational Raman spectrum of water vapour ν1 and ν3. Mol. Phys., 36, 727732, doi:10.1080/00268977800101881.

    • Search Google Scholar
    • Export Citation
  • O’Connor, D. J., , Iacopino D. , , Healy D. A. , , O’Sullivan D. , , and Sodeau J. R. , 2011: The intrinsic fluorescence spectra of selected pollen and fungal spores. Atmos. Environ., 45, 64516458, doi:10.1016/j.atmosenv.2011.07.044.

    • Search Google Scholar
    • Export Citation
  • Pan, Y.-L., , Hartings J. , , Pinnick R. G. , , Hill S. C. , , Halverson J. , , and Chang R. K. , 2003: Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci. Technol., 37, 628639, doi:10.1080/02786820300904.

    • Search Google Scholar
    • Export Citation
  • Pan, Y.-L., , Pinnick R. G. , , Hill S. C. , , Rosen J. M. , , and Chang R. K. , 2007: Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. J. Geophys. Res.,112, D24S19, doi:10.1029/2007JD008741.

  • Pan, Y.-L., , Hill S. C. , , Pinnick R. G. , , House J. M. , , Flagan R. C. , , and Chang R. K. , 2011: Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles. Atmos. Environ., 45, 15551563, doi:10.1016/j.atmosenv.2010.12.042.

    • Search Google Scholar
    • Export Citation
  • Park, S.-H., , Kim Y.-G. , , Kim D. , , Cheong H.-D. , , Choi W.-S. , , and Lee J.-I. , 2010: Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water. J. Opt. Soc. Korea, 14, 209214, doi:10.3807/JOSK.2010.14.3.209.

    • Search Google Scholar
    • Export Citation
  • Penney, C. M., , and Lapp M. , 1976: Raman-scattering cross sections for water vapor. J. Opt. Soc. Amer., 66, 422425, doi:10.1364/JOSA.66.000422.

    • Search Google Scholar
    • Export Citation
  • Pershin, S. M., , and Bunkin A. F. , 1998: A “jump” in the position and width of the Raman band envelope of O-H valence vibrations upon phase transitions of the first and second kinds in water. Opt. Spectrosc., 85, 190193.

    • Search Google Scholar
    • Export Citation
  • Pershin, S. M., , Bunkin A. F. , , Lukyanchenko V. A. , , and Nigmatullin R. R. , 2007: Detection of the OH band fine structure in liquid water by means of new treatment procedure based on the statistics of the fractional moments. Laser Phys. Lett., 4, 809813, doi:10.1002/lapl.200710067.

    • Search Google Scholar
    • Export Citation
  • Pöhlker, C., , Huffman J. A. , , and Pöschl U. , 2012: Autofluorescence of atmospheric bioaerosols—Fluorescent biomolecules and potential interferences. Atmos. Meas. Tech., 5, 3771, doi:10.5194/amt-5-37-2012.

    • Search Google Scholar
    • Export Citation
  • Putkiranta, M., , Manninen A. , , Rostedt A. , , Saarela J. , , Sorvajärvi T. , , Marjamäki M. , , Hernberg R. , , and Keskinen J. , 2010: Fluorescence properties of biochemicals in dry NaCl composite aerosol particles and in solutions. Appl. Phys., 99B, 841851, doi:10.1007/s00340-010-4073-z.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , Coakley J. A. Jr., , Fairall C. W. , , Kropfli R. A. , , and Lenschow D. H. , 1984: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc., 65, 12901301, doi:10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., 2012: Raman backscatter-coefficient spectra of cirrus ice. Proc. 26th Int. Laser Radar Conf., Porto Heli, Greece, ICLAS, S3O-06.

  • Reichardt, J., , and Reichardt S. , 2006: Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements. Appl. Opt., 45, 27962804, doi:10.1364/AO.45.002796.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., , Reichardt S. , , Lin R.-F. , , Hess M. , , McGee T. J. , , and Starr D. O. , 2008: Optical-microphysical cirrus model. J. Geophys. Res.,113, D22201, doi:10.1029/2008JD010071.

  • Reichardt, J., , Wandinger U. , , Klein V. , , Mattis I. , , Hilber B. , , and Begbie R. , 2012: RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. Appl. Opt., 51, 81118131, doi:10.1364/AO.51.008111.

    • Search Google Scholar
    • Export Citation
  • Rizi, V., , Iarlori M. , , Rocci G. , , and Visconti G. , 2004: Raman lidar observations of cloud liquid water. Appl. Opt., 43, 64406453, doi:10.1364/AO.43.006440.

    • Search Google Scholar
    • Export Citation
  • Romanov, N. P., , and Shuklin V. S. , 1975: Raman scattering cross section of liquid water. Opt. Spectrosc., 38, 646648.

  • Sakai, T., , Whiteman D. N. , , Russo F. , , Turner D. D. , , Veselovskii I. , , Melfi S. H. , , Nagai T. , , and Mano Y. , 2013: Liquid water cloud measurements using the Raman lidar technique: Current understanding and future research needs. J. Atmos. Oceanic Technol., 30, 13371353, doi:10.1175/JTECH-D-12-00099.1.

    • Search Google Scholar
    • Export Citation
  • Sansonetti, C. J., , Salit M. L. , , and Reader J. , 1996: Wavelengths of spectral lines in mercury pencil lamps. Appl. Opt., 35, 7477, doi:10.1364/AO.35.000074.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and Petrilla R. L. , 1986: Lidar depolarization from multiple scattering in marine stratus clouds. Appl. Opt., 25, 14501459, doi:10.1364/AO.25.001450.

    • Search Google Scholar
    • Export Citation
  • Scherer, J. R., , and Snyder R. G. , 1977: Raman intensities of single crystal ice Ih. J. Chem. Phys., 67, 47944811, doi:10.1063/1.434683.

    • Search Google Scholar
    • Export Citation
  • Scherer, J. R., , Go M. K. , , and Kint S. , 1974: Raman spectra and structure of water from −10 to 90°. J. Phys. Chem., 78, 13041313, doi:10.1021/j100606a013.

    • Search Google Scholar
    • Export Citation
  • Schmidt, J., , Wandinger U. , , and Malinka A. , 2013: Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties. Appl. Opt., 52, 22352247, doi:10.1364/AO.52.002235.

    • Search Google Scholar
    • Export Citation
  • Slusher, R. B., , and Derr V. E. , 1975: Temperature dependence and cross sections of some Stokes and anti-Stokes lines in ice Ih. Appl. Opt., 14, 21162120, doi:10.1364/AO.14.002116.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , Tsay S.-C. , , Stackhouse P. W. , , and Flatau P. J. , 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 17421754, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., , Forster C. , , Frank A. , , Seibert P. , , and Wotawa G. , 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, doi:10.5194/acp-5-2461-2005.

    • Search Google Scholar
    • Export Citation
  • Suzuki, H., , Matsuzaki Y. , , Muraoka A. , , and Tachikawa M. , 2012: Raman spectroscopy of optically levitated supercooled water droplet. J. Chem. Phys.,136, 234508, doi:10.1063/1.4729476.

  • Tang, I. N., , and Fung K. H. , 1989: Characterization of inorganic salt particles by Raman spectroscopy. J. Aerosol Sci., 20, 609617, doi:10.1016/0021-8502(89)90106-7.

    • Search Google Scholar
    • Export Citation
  • Toprak, E., , and Schnaiter M. , 2012: Fluorescent biological aerosol particles (FBAPs) measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: Laboratory tests combined with a one year field study. Atmos. Chem. Phys. Discuss., 12, 17 60717 656, doi:10.5194/acpd-12-17607-2012.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2007: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc., 88, 177190, doi:10.1175/BAMS-88-2-177.

    • Search Google Scholar
    • Export Citation
  • Veselovskii, I. A., , Cha H. K. , , Kim D. H. , , Choi S. C. , , and Lee J. M. , 2000: Raman lidar for the study of liquid water and water vapor in the troposphere. Appl. Phys., 71B, 113117, doi:10.1007/s003400000290.

    • Search Google Scholar
    • Export Citation
  • Veselovskii, I. A., , Griaznov V. , , Kolgotin A. , , and Whiteman D. N. , 2002: Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 2. Numerical simulation. Appl. Opt., 41, 57835791, doi:10.1364/AO.41.005783.

    • Search Google Scholar
    • Export Citation
  • Walrafen, G. E., 1967: Raman spectral studies of the effects of temperature on water structure. J. Chem. Phys., 47, 114126, doi:10.1063/1.1711834.

    • Search Google Scholar
    • Export Citation
  • Wang, A., and Coauthors, 2003: Development of the Mars microbeam Raman spectrometer (MMRS). J. Geophys. Res.,108, 5005, doi:10.1029/2002JE001902.

  • Wang, Z., , Whiteman D. N. , , Demoz B. B. , , and Veselovskii I. , 2004: A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar. Geophys. Res. Lett.,31, L15101, doi:10.1029/2004GL020004.

  • Whiteman, D. N., 2003: Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Appl. Opt., 42, 25712592, doi:10.1364/AO.42.002571.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., , and Melfi S. H. , 1999: Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar. J. Geophys. Res., 104, 31 41131 419, doi:10.1029/1999JD901004.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., , Walrafen G. E. , , Yang W.-H. , , and Melfi S. H. , 1999: Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry. Appl. Opt., 38, 26142615, doi:10.1364/AO.38.002614.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2001: Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie. J. Geophys. Res., 106, 52115225, doi:10.1029/2000JD900621.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2010: Airborne and ground-based measurements using a high-performance Raman lidar. J. Atmos. Oceanic Technol., 27, 17811801, doi:10.1175/2010JTECHA1391.1.

    • Search Google Scholar
    • Export Citation
  • Winkler, P. M., , Ortega J. , , Karl T. , , Cappellin L. , , Friedli H. R. , , Barsanti K. , , McMurry P. H. , , and Smith J. N. , 2012: Identification of the biogenic compounds responsible for size-dependent nanoparticle growth. Geophys. Res. Lett.,39, L20815, doi:10.1029/2012GL053253.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 18
PDF Downloads 47 47 15

Cloud and Aerosol Spectroscopy with Raman Lidar

View More View Less
  • 1 Deutscher Wetterdienst, Lindenberg, Germany
© Get Permissions
Restricted access

Abstract

A spectrometer for height-resolved measurements of the Raman backscatter-coefficient spectrum of water in its gaseous and condensed phases is presented. The spectrometer is fiber coupled to the far-range receiver of the Raman Lidar for Atmospheric Moisture Sensing (RAMSES) of the German Meteorological Service and consists of a Czerny–Turner spectrograph (500-mm focal length) and a 32-channel single-photon-counting detection system based on a multianode photomultiplier. During a typical measurement (transmitter wavelength of 355 nm), the spectrum between 385 and 410 nm is recorded with a spectral resolution of 0.79 nm; the vertical resolution is 15 m and the height range is 15 km. The techniques outlined are those that are applied to calibrate the spectrum measurement and to monitor fluorescence by atmospheric aerosols that have the potential to interfere with the water observation. For the first time, Raman spectra of liquid-water, mixed-phase, and cirrus clouds are reported, and their temperature dependence is investigated by means of band decomposition. The spectrum-integrated condensed-water Raman backscatter coefficient strongly depends on cloud particle volume, but it is not tightly correlated with the cloud optical properties (particle extinction and backscatter coefficient), which implies that retrieval of cloud water content from optical proxies is likely impossible. Aerosol measurements are also discussed. Depending on type, aerosols may show no backscattering in the spectrometer range at all, or a featureless spectrum that stems quite likely from fluorescence. Finally, the example of a cloud forming in an aerosol layer demonstrates that the new instrument not only opens up new perspectives in cloud research but also contributes to studies of cloud–aerosol interaction.

Corresponding author address: Jens Reichardt, Richard-Aßmann-Observatorium, Deutscher Wetterdienst, Am Observatorium 12, 15848 Lindenberg, Germany. E-mail: jens.reichardt@dwd.de

Abstract

A spectrometer for height-resolved measurements of the Raman backscatter-coefficient spectrum of water in its gaseous and condensed phases is presented. The spectrometer is fiber coupled to the far-range receiver of the Raman Lidar for Atmospheric Moisture Sensing (RAMSES) of the German Meteorological Service and consists of a Czerny–Turner spectrograph (500-mm focal length) and a 32-channel single-photon-counting detection system based on a multianode photomultiplier. During a typical measurement (transmitter wavelength of 355 nm), the spectrum between 385 and 410 nm is recorded with a spectral resolution of 0.79 nm; the vertical resolution is 15 m and the height range is 15 km. The techniques outlined are those that are applied to calibrate the spectrum measurement and to monitor fluorescence by atmospheric aerosols that have the potential to interfere with the water observation. For the first time, Raman spectra of liquid-water, mixed-phase, and cirrus clouds are reported, and their temperature dependence is investigated by means of band decomposition. The spectrum-integrated condensed-water Raman backscatter coefficient strongly depends on cloud particle volume, but it is not tightly correlated with the cloud optical properties (particle extinction and backscatter coefficient), which implies that retrieval of cloud water content from optical proxies is likely impossible. Aerosol measurements are also discussed. Depending on type, aerosols may show no backscattering in the spectrometer range at all, or a featureless spectrum that stems quite likely from fluorescence. Finally, the example of a cloud forming in an aerosol layer demonstrates that the new instrument not only opens up new perspectives in cloud research but also contributes to studies of cloud–aerosol interaction.

Corresponding author address: Jens Reichardt, Richard-Aßmann-Observatorium, Deutscher Wetterdienst, Am Observatorium 12, 15848 Lindenberg, Germany. E-mail: jens.reichardt@dwd.de
Save