• Anagnostou, E., , Morales C. , , and Dinku T. , 2001: The use of TRMM precipitation radar observations in determining ground radar calibration biases. J. Atmos. Oceanic Technol., 18, 616628, doi:10.1175/1520-0426(2001)018<0616:TUOTPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bolen, S. M., , and Chandrasekar V. , 2000: Quantitative cross validation of space-based and ground-based radar observations. J. Appl. Meteor., 39, 20712079, doi:10.1175/1520-0450(2001)040<2071:QCVOSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bolen, S. M., , and Chandrasekar V. , 2003: Methodology for aligning and comparing spaceborne radar and ground-based radar observations. J. Atmos. Oceanic Technol., 20, 647659, doi:10.1175/1520-0426(2003)20<647:MFAACS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., , Haddad Z. S. , , Kitiyakara A. , , and Li F. K. , 1998: Effects of nonuniform beam filling on rainfall retrieval for the TRMM precipitation radar. J. Atmos. Oceanic Technol., 15, 635646, doi:10.1175/1520-0426(1998)015<0635:EONBFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., 1997: Special Sensor Microwave Imager derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16 71516 735, doi:10.1029/97JD01210.

    • Search Google Scholar
    • Export Citation
  • Gabella, M., , Joss J. , , Michaelides S. , , and Perona G. , 2006: Range adjustment for ground-based radar, derived with the spaceborne TRMM precipitation radar. IEEE Trans. Geosci. Remote Sens., 44, 126133, doi:10.1109/TGRS.2005.858436.

    • Search Google Scholar
    • Export Citation
  • Ha, E., , and North G. R. , 1999: Error analysis for some ground validation designs for satellite observations of precipitation. J. Atmos. Oceanic Technol., 16, 19491957, doi:10.1175/1520-0426(1999)016<1949:EAFSGV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Habib, E., , Krajewski W. , , and Kruger A. , 2001: Sampling errors of tipping bucket rain gauge measurements. J. Hydrol. Eng., 6, 159166, doi:10.1061/(ASCE)1084-0699(2001)6:2(159).

    • Search Google Scholar
    • Export Citation
  • Habib, E., , Larson B. , , and Graschel J. , 2009: Validation of NEXRAD multisensor precipitation estimates using an experimental dense rain gauge network in south Louisiana. J. Hydrol., 373, 463478, doi:10.1016/j.jhydrol.2009.05.010.

    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W., , and Bordan J. , 1954: Errors inherent in the radar measurements of rainfall at attenuating wavelengths. J. Meteor., 11, 5867, doi:10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., 2004: Comparison of heavy rainfall mechanisms in Korea and the central US. J. Meteor. Soc. Japan, 82, 14691479, doi:10.2151/jmsj.2004.1469.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., , Skofronick-Jackson G. , , Kummerow C. D. , , and Shepherd J. M. , 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation and Prediction, S. C. Michaelides, Ed., Springer, 131–169.

  • Humphrey, M. D., , Istok J. D. , , Lee J. Y. , , Hevesi J. A. , , and Flint A. L. , 1997: A new method for automated dynamic calibration of tipping-bucket rain gauges. J. Atmos. Oceanic Technol., 14, 15131519, doi:10.1175/1520-0426(1997)014<1513:ANMFAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , Kozu T. , , Meneghini R. , , Awaka J. , , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ikai, J., , and Nakamura K. , 2003: Comparison of rain rates over the ocean derived from TRMM Microwave Imager and precipitation radar. J. Atmos. Oceanic Technol., 20, 17091726, doi:10.1175/1520-0426(2003)020<1709:CORROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., , and Blackall R. M. , 1992: Representativeness errors in comparisons between radar and gauge measurements of rainfall. J. Hydrol., 134, 1333, doi:10.1016/0022-1694(92)90026-R.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., , and Iguchi T. , 1999: Nonuniform beamfilling correction for spaceborne radar rainfall measurement: Implications from TOGA COARE radar data analysis. J. Atmos. Oceanic Technol., 16, 17221735, doi:10.1175/1520-0426(1999)016<1722:NBCFSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., and Coauthors, 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 39, 102116, doi:10.1109/36.898669.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , Olson W. S. , , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, doi:10.1109/36.536538.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , Barnes W. , , Kozu T. , , Shiue J. , , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liao, L., , and Meneghini R. , 2009a: Validation of TRMM precipitation radar through comparison of its multiyear measurements with ground-based radar. J. Appl. Meteor. Climatol., 48, 804817, doi:10.1175/2008JAMC1974.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., , and Meneghini R. , 2009b: Changes in the TRMM version-5 and version-6 precipitation radar products due to orbit boost. J. Meteor. Soc. Japan, 87A, 93107, doi:10.2151/jmsj.87A.93.

    • Search Google Scholar
    • Export Citation
  • Liao, L., , Meneghini R. , , and Iguichi T. , 2001: Comparisons of rain rate and reflectivity factor derived from the TRMM precipitation radar and the WSR-88D over the Melbourne, Florida, site. J. Atmos. Oceanic Technol., 18, 19591974, doi:10.1175/1520-0426(2001)018<1959:CORRAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., , and Ferraro R. R. , 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 8382, doi:10.1029/2001JD001512.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., , and Ferraro R. R. , 2005: Microwave rainfall estimation over coasts. J. Atmos. Oceanic Technol., 22, 497512, doi:10.1175/JTECH1732.1.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., , Iguchi T. , , Kozu T. , , Liao L. , , Okamoto K. , , Jones J. , , and Kwiatkowski J. , 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39, 20532070, doi:10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morris, K. R., , and Schwaller M. R. , 2011: Sensitivity of spaceborne and ground radar comparison results to data analysis methods and constraints. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor Soc, 68. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191729.html.]

  • Negri, A., , Bell T. , , and Xu L. , 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19, 13331344, doi:10.1175/1520-0426(2002)019<1333:SOTDCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nespor, V., , and Sevruk B. , 1999: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Oceanic Technol., 16, 450464, doi:10.1175/1520-0426(1999)016<0450:EOWIEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., , Kummerow C. D. , , Hong Y. , , and Tao W.-K. , 1999: Atmospheric latent heating distributions in the tropics derived from satellite passive microwave radiometer measurements. J. Appl. Meteor., 38, 633664, doi:10.1175/1520-0450(1999)038<0633:ALHDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainty estimates. J. Appl. Meteor. Climatol., 45, 702720, doi:10.1175/JAM2369.1.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , Atlas D. , , Wolff D. B. , , and Amitai E. , 1992: Beamwidth effects on Z–R relations and area-integrated rainfall. J. Appl. Meteor., 31, 454464, doi:10.1175/1520-0450(1992)031<0454:BEOZRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and Houze R. A. Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39, 21512164, doi:10.1175/1520-0450(2001)040<2151:CORDFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwaller, M. R., , and Morris K. R. , 2011: A ground validation network for the Global Precipitation Measurement mission. J. Atmos. Oceanic Technol., 28, 301319, doi:10.1175/2010JTECHA1403.1.

    • Search Google Scholar
    • Export Citation
  • Seo, E. K., , Sohn B. J. , , and Liu G. , 2007: How TRMM precipitation radar and microwave imager retrieved rain rates differ. Geophys. Res. Lett., 34, L24803, doi:10.1029/2007GL032331.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , Adler R. F. , , and North G. R. , 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295, doi:10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., , Han H.-J. , , Seo E.-K. , 2010: Validation of satellite-based high-resolution rainfall products over the Korean Peninsula using data from a dense rain gauge network. J. Appl. Meteor. Climatol., 49, 701714, doi:10.1175/2009JAMC2266.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, R., , Goodman W. H. , , and Hood R. E. , 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , and Wolff D. B. , 2009: Comparisons of reflectivities from the TRMM precipitation radar and ground-based radars. J. Atmos. Oceanic Technol., 26, 857875, doi:10.1175/2008JTECHA1175.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , Fisher B. L. , , and Wolff D. B. , 2008: Estimating rain rates from tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 25, 4356, doi:10.1175/2007JTECHA895.1.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., , and Fisher B. L. , 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237, doi:10.1175/2008JAMC1875.1.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., , Marks D. A. , , Amitai E. , , Silberstein D. S. , , Fisher B. L. , , Tokay A. , , Wang J. , , and Pippitt J. L. , 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22, 365380, doi:10.1175/JTECH1700.1.

    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., , and Jiang H. , 2013: Investigation of PR and TMI version 6 and version 7 rainfall algorithms in landfalling tropical cyclones relative to the NEXRAD stage-IV multisensor precipitation estimate dataset. J. Appl. Meteor. Climatol., 52, 28092827, doi:10.1175/JAMC-D-12-0274.1.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 1975: On radar-raingage comparison. J. Appl. Meteor., 14, 14301436, doi:10.1175/1520-0450(1975)014<1430:ORRC>2.0.CO;2.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 15
PDF Downloads 23 23 8

Global Precipitation Measurement (GPM) Ground Validation (GV) Prototype in the Korean Peninsula

View More View Less
  • 1 National Institute of Meteorological Research, Korea Meteorological Administration, Jeju-do, and Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
  • 2 National Institute of Meteorological Research, Korea Meteorological Administration, Jeju-do, South Korea
  • 3 National Meteorological Satellite Center, Korea Meteorological Administration, Jincheon, South Korea, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • 4 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 5 NASA Wallops Flight Facility, Wallops Island, Virginia
© Get Permissions
Restricted access

Abstract

Since 2009, the Korea Meteorological Administration (KMA) has participated in ground validation (GV) projects through international partnerships within the framework of the Global Precipitation Measurement (GPM) Mission. The goal of this work is to assess the reliability of ground-based measurements in the Korean Peninsula as a means for validating precipitation products retrieved from satellite microwave sensors, with an emphasis on East Asian precipitation. KMA has a well-developed operational weather service infrastructure composed of meteorological radars, a dense rain gauge network, and automated weather stations. Measurements from these systems, including data from four ground-based radars (GRs), were combined with satellite data from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and used as a proxy for GPM GV over the Korean Peninsula. A time series of mean reflectivity differences (GR − PR) for stratiform-only and above-brightband-only data showed that the time-averaged difference fell between −2.0 and +1.0 dBZ for the four GRs used in this study. Site-specific adjustments for these relative mean biases were applied to GR reflectivities, and detailed statistical comparisons of reflectivity and rain rate between PR and bias-adjusted GR were carried out. In rain-rate comparisons, surface rain from the TRMM Microwave Imager (TMI) and the rain gauges were added and the results varied according to rain type. Bias correction has had a positive effect on GR rain rate comparing with PR and gauge rain rates. This study confirmed advance preparation for GPM GV system was optimized on the Korean Peninsula using the official framework.

Corresponding author address: Mi-Lim Ou, National Institute of Meteorological Research, Korea Meteorological Administration, 33, Seohobuk-ro, Seogwipo-si, Jeju-do 697-845, South Korea. E-mail: milim@korea.kr

Abstract

Since 2009, the Korea Meteorological Administration (KMA) has participated in ground validation (GV) projects through international partnerships within the framework of the Global Precipitation Measurement (GPM) Mission. The goal of this work is to assess the reliability of ground-based measurements in the Korean Peninsula as a means for validating precipitation products retrieved from satellite microwave sensors, with an emphasis on East Asian precipitation. KMA has a well-developed operational weather service infrastructure composed of meteorological radars, a dense rain gauge network, and automated weather stations. Measurements from these systems, including data from four ground-based radars (GRs), were combined with satellite data from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and used as a proxy for GPM GV over the Korean Peninsula. A time series of mean reflectivity differences (GR − PR) for stratiform-only and above-brightband-only data showed that the time-averaged difference fell between −2.0 and +1.0 dBZ for the four GRs used in this study. Site-specific adjustments for these relative mean biases were applied to GR reflectivities, and detailed statistical comparisons of reflectivity and rain rate between PR and bias-adjusted GR were carried out. In rain-rate comparisons, surface rain from the TRMM Microwave Imager (TMI) and the rain gauges were added and the results varied according to rain type. Bias correction has had a positive effect on GR rain rate comparing with PR and gauge rain rates. This study confirmed advance preparation for GPM GV system was optimized on the Korean Peninsula using the official framework.

Corresponding author address: Mi-Lim Ou, National Institute of Meteorological Research, Korea Meteorological Administration, 33, Seohobuk-ro, Seogwipo-si, Jeju-do 697-845, South Korea. E-mail: milim@korea.kr
Save