• Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting (WRF) Model’s community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, doi:10.1175/BAMS-D-11-00167.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-Y., , Huang C.-Y. , , Kuo Y.-H. , , Guo Y.-R. , , and Sokolovskiy S. , 2009: Assimilation of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with WRF 3DVAR and its impact on the prediction of a typhoon event. Terr. Atmos. Oceanic Sci., 20, 133154, doi:10.3319/TAO.2007.11.29.01(F3C).

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., , and Derber J. C. , 2008: Operational implementation of COSMIC observations into NCEP’s Global Data Assimilation System. Wea. Forecasting, 23, 702711, doi:10.1175/2008WAF2007070.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., , Kuo Y.-H. , , Barker D. , , and Rizvi S. R. H. , 2006: Assessing the impact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: A case study. Mon. Wea. Rev., 134, 32833296, doi:10.1175/MWR3241.1.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., 2008: Forecast impact experiment with a constellation of GPS radio occultation receivers. Atmos. Sci. Lett., 9, 111118, doi:10.1002/asl.169.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., , and Thepaut J. N. , 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132, 605623, doi:10.1256/qj.04.182.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., , Jupp A. M. , , and Marquardt C. , 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett.,32, L03804, doi:10.1029/2004GL020806.

  • Huang, C.-Y., , Kuo Y.-H. , , Chen S.-H. , , and Vandenberghe F. , 2005: Improvements on typhoon forecast with assimilated GPS occultation refractivity. Wea. Forecasting, 20, 931953, doi:10.1175/WAF874.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., , Zou X. , , and Huang W. , 1998: The impact of global positioning system data on the prediction of an extratropical cyclone: An observing system simulation experiment. Dyn. Atmos. Oceans, 27, 439470, doi:10.1016/S0377-0265(97)00023-7.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., , Sokolovskiy S. V. , , Anthes R. A. , , and Vandenberghe F. , 2000: Assimilation of GPS radio occultation data for numerical weather prediction. Terr. Atmos. Oceanic Sci., 11, 157186.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., , Wee T.-K. , , Sokolovskiy S. , , Rocken C. , , Schreiner W. , , Hunt D. , , and Anthes R. A. , 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, doi:10.2151/jmsj.2004.507.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., , Schreiner W. S. , , Wang J. , , Rossiter D. L. , , and Zhang Y. , 2005: Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett.,32, L05817, doi:10.1029/2004GL021443.

  • Liu, H., , and Zou X. , 2003: Improvements to GPS radio occultation ray-tracing model and their impacts on assimilation of bending angle. J. Geophys. Res., 108, 4548, doi:10.1029/2002JD003160.

    • Search Google Scholar
    • Export Citation
  • Liu, H., , Anderson J. , , Kuo Y.-H. , , Snyder C. , , and Caya A. , 2008: Evaluation of a nonlocal quasi-phase observation operator in assimilation of CHAMP radio occultation refractivity with WRF. Mon. Wea. Rev., 136, 242256, doi:10.1175/2007MWR2042.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., , Kuo Y.-H. , , Wang B. , , Wu W.-S. , , and Sokolovskiy S. , 2009: Comparison of local and nonlocal observation operators for the assimilation of GPS RO data with the NCEP GSI system: An OSSE study. Mon. Wea. Rev., 137, 35753587, doi:10.1175/2009MWR2809.1.

    • Search Google Scholar
    • Export Citation
  • Poli, P., , Moll P. , , Puech D. , , Rabier F. , , and Healy S. , 2009: Quality control, error analysis and impact assessment of FORMOSAT-3/COSMIC in numerical weather prediction. Terr. Atmos. Oceanic Sci., 20, 101113, doi:10.3319/TAO.2008.01.21.02(F3C).

    • Search Google Scholar
    • Export Citation
  • Rennie, M. P., 2010: The impact of GPS radio occultation assimilation at the Met Office. Quart. J. Roy. Meteor. Soc., 136, 116131, doi:10.1002/qj.521.

    • Search Google Scholar
    • Export Citation
  • Shao, H., , Zou X. , , and Hajj G. A. , 2009: Test of a non-local excess phase delay operator for GPS radio occultation data assimilation. J. Appl. Remote Sens.,3, 033508, doi:10.1117/1.3094060.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Smith, E. K., , and Weintraub S. , 1953: The constants in the equation for atmospheric refractivity index at radio frequencies. Proc. IRE, 41,10351037, doi:10.1109/JRPROC.1953.274297.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., , Kuo Y.-H. , , and Wang W. , 2005: Evaluation of a linear phase observation operator with CHAMP radio occultation data and high-resolution regional analysis. Mon. Wea. Rev., 133, 30533059, doi:10.1175/MWR3006.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , Liu Y. , , Wang B. , , and Ji Z. , 2004: Parallel computing of a variational data assimilation model for GPS/MET observation using the ray-tracing method. Adv. Atmos. Sci., 21, 220226, doi:10.1007/BF02915708.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Coauthors, 1999: A ray-tracing operator and its adjoint for the use of GPS/MET refraction angle measurements. J. Geophys. Res., 104, 22 30122 318, doi:10.1029/1999JD900450.

    • Search Google Scholar
    • Export Citation
  • Zou, X., , Wang B. , , Liu H. , , Anthes R. A. , , Matsumura T. , , and Zhu Y.-J. , 2000: A ray-tracing operator and its adjoint for the use of GPS/MET refraction angle measurements. Quart. J. Roy. Meteor. Soc., 126, 30133040, doi:10.1002/qj.49712657003.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 3
PDF Downloads 12 12 1

Parallelization Strategies for the GPS Radio Occultation Data Assimilation with a Nonlocal Operator in the Weather Research and Forecasting Model

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • 2 University Corporation for Atmospheric Research, Boulder, Colorado
  • 3 National Center for Atmospheric Research* Boulder, Colorado
  • 4 Taiwan Typhoon and Flood Research Institute, Taipei, Taiwan
© Get Permissions
Restricted access

Abstract

The nonlocal excess phase observation operator for assimilating the global positioning system (GPS) radio occultation (RO) sounding data has been proven by some research papers to produce significantly better analyses for numerical weather prediction (NWP) compared to the local refractivity observation operator. However, the high computational cost and the difficulties in parallelization associated with the nonlocal GPS RO operator deter its application in research and operational NWP practices. In this article, two strategies are designed and implemented in the data assimilation system for the Weather Research and Forecasting Model to demonstrate the capability of parallel assimilation of GPS RO profiles with the nonlocal excess phase observation operator. In particular, to solve the parallel load imbalance problem due to the uneven geographic distribution of the GPS RO observations, round-robin scheduling is adopted to distribute GPS RO observations among the processing cores to balance the workload. The wall clock time required to complete a five-iteration minimization on a demonstration Antarctic case with 106 GPS RO observations is reduced from more than 3.5 h with a single processing core to 2.5 min with 106 processing cores. These strategies present the possibility of application of the nonlocal GPS RO excess phase observation operator in operational data assimilation systems with a cutoff time limit.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Xin Zhang, MMM Division, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: xinzhang@ucar.edu

Abstract

The nonlocal excess phase observation operator for assimilating the global positioning system (GPS) radio occultation (RO) sounding data has been proven by some research papers to produce significantly better analyses for numerical weather prediction (NWP) compared to the local refractivity observation operator. However, the high computational cost and the difficulties in parallelization associated with the nonlocal GPS RO operator deter its application in research and operational NWP practices. In this article, two strategies are designed and implemented in the data assimilation system for the Weather Research and Forecasting Model to demonstrate the capability of parallel assimilation of GPS RO profiles with the nonlocal excess phase observation operator. In particular, to solve the parallel load imbalance problem due to the uneven geographic distribution of the GPS RO observations, round-robin scheduling is adopted to distribute GPS RO observations among the processing cores to balance the workload. The wall clock time required to complete a five-iteration minimization on a demonstration Antarctic case with 106 GPS RO observations is reduced from more than 3.5 h with a single processing core to 2.5 min with 106 processing cores. These strategies present the possibility of application of the nonlocal GPS RO excess phase observation operator in operational data assimilation systems with a cutoff time limit.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Xin Zhang, MMM Division, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: xinzhang@ucar.edu
Save