• Atlas, R., , Hoffman R. N. , , Ardizzone J. , , Leidner S. M. , , Jusem J. C. , , Smith D. K. , , and Gombos D. , 2011: A cross-calibrated multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, doi:10.1175/2010BAMS2946.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and Spiegel S. L. , 1971: The structure of wind-driven equatorial currents in homogeneous oceans. J. Phys. Oceanogr., 1, 149160, doi:10.1175/1520-0485(1971)001<0149:SOWDEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drenkard, E. J., , and Karnauskas K. B. , 2014: Strengthening of the Pacific Equatorial Undercurrent in the SODA reanalysis: Mechanisms, ocean dynamics, and implications. J. Climate, 27, 2405–2416, doi:10.1175/JCLI-D-13-00359.1.

    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., , and Durland T. S. , 2012: Wavenumber–frequency spectra of inertia–gravity and mixed Rossby–gravity waves in the equatorial Pacific Ocean. J. Phys. Oceanogr., 42, 18591881, doi:10.1175/JPO-D-11-0235.1.

    • Search Google Scholar
    • Export Citation
  • Firing, E., cited 2013: Notes from Acoustic Doppler Current Profiler Workshop at the National Oceanographic Data Center, May 14–15, 1992. [Available online at http://ilikai.soest.hawaii.edu/sadcp/intro.html.]

  • Firing, E., , Lukas R. , , Sadler J. , , and Wyrtki K. , 1983: Equatorial undercurrent disappears during the 1982–83 El Niño. Science, 222, 11211123, doi:10.1126/science.222.4628.1121.

    • Search Google Scholar
    • Export Citation
  • Gove, J. M., , Merrifield M. A. , , and Brainard R. E. , 2006: Temporal variability of current-driven upwelling at Jarvis Island. J. Geophys. Res., 111, C12011, doi:10.1029/2005JC003161.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., 2005: The equatorial undercurrent, meridional overturning circulation, and their roles in mass and heat exchanges during El Niño events in the tropical Pacific Ocean. Ocean Dyn., 55, 110123, doi:10.1007/s10236-005-0115-1.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , McPhaden M. J. , , and Firing E. , 2001: Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr., 31, 839849, doi:10.1175/1520-0485(2001)031<0839:EPOHVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , Sloyan B. M. , , Kessler W. S. , , and McTaggart K. E. , 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific Ocean during the 1990s. Prog. Oceanogr., 52, 3161, doi:10.1016/S0079-6611(02)00021-6.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., , and Cohen A. L. , 2012: Equatorial refuge amid tropical warming. Nat. Climate Change, 2, 530534, doi:10.1038/nclimate1499.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., , Murtugudde R. , , and Busalacchi A. J. , 2010: Observing the Galápagos–EUC interaction: Insights and challenges. J. Phys. Oceanogr., 40, 27682777, doi:10.1175/2010JPO4461.1.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., , Johnson C. J. , , and Murtugudde R. , 2012: An equatorial ocean bottleneck in global climate models. J. Climate, 25, 343349, doi:10.1175/JCLI-D-11-00059.1.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., , McPhaden M. J. , , and Weickmann K. M. , 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Geophys. Res., 100, 10 61310 631, doi:10.1029/95JC00382.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., 1986: The termination of the equatorial undercurrent in the eastern Pacific. Prog. Oceanogr.,16, 63–90, doi:10.1016/0079-6611(86)90007-8.

  • Lyman, J. M., , Johnson G. C. , , and Kessler W. S. , 2007: Distinct 17- and 33-day tropical instability waves in subsurface observations. J. Phys. Oceanogr., 37, 855872, doi:10.1175/JPO3023.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and Julian P. R. , 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean–Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, doi:10.1029/97JC02906.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 2
PDF Downloads 12 12 1

The Equatorial Undercurrent and TAO Sampling Bias from a Decade at SEA

View More View Less
  • 1 Department of Geology, Oberlin College, Oberlin, Ohio, and Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions
Restricted access

Abstract

The NOAA Tropical Atmosphere Ocean (TAO) moored array has, for three decades, been a valuable resource for monitoring and forecasting El Niño–Southern Oscillation and understanding physical oceanographic as well as coupled processes in the tropical Pacific influencing global climate. Acoustic Doppler current profiler (ADCP) measurements by TAO moorings provide benchmarks for evaluating numerical simulations of subsurface circulation including the Equatorial Undercurrent (EUC). Meanwhile, the Sea Education Association (SEA) has been collecting data during repeat cruises to the central equatorial Pacific Ocean (160°–126°W) throughout the past decade that provide useful cross validation and quantitative insight into the potential for stationary observing platforms such as TAO to incur sampling biases related to the strength of the EUC. This paper describes some essential sampling characteristics of the SEA dataset, compares SEA and TAO velocity measurements in the vicinity of the EUC, shares new insight into EUC characteristics and behavior only observable in repeat cross-equatorial sections, and estimates the sampling bias incurred by equatorial TAO moorings in their estimates of the velocity and transport of the EUC. The SEA high-resolution ADCP dataset compares well with concurrent TAO measurements (RMSE = 0.05 m s−1; R2 = 0.98), suggests that the EUC core meanders sinusoidally about the equator between ±0.4° latitude, and reveals a mean sampling bias of equatorial measurements (e.g., TAO) of the EUC’s zonal velocity of −0.14 ± 0.03 m s−1 as well as a ~10% underestimation of EUC volume transport. A bias-corrected monthly record and climatology of EUC strength at 140°W for 1990–2010 is presented.

Corresponding author address: Kristopher B. Karnauskas, Woods Hole Oceanographic Institution, 360 Woods Hole Rd., MS 23, Woods Hole, MA 02544. E-mail: kk@whoi.edu

Abstract

The NOAA Tropical Atmosphere Ocean (TAO) moored array has, for three decades, been a valuable resource for monitoring and forecasting El Niño–Southern Oscillation and understanding physical oceanographic as well as coupled processes in the tropical Pacific influencing global climate. Acoustic Doppler current profiler (ADCP) measurements by TAO moorings provide benchmarks for evaluating numerical simulations of subsurface circulation including the Equatorial Undercurrent (EUC). Meanwhile, the Sea Education Association (SEA) has been collecting data during repeat cruises to the central equatorial Pacific Ocean (160°–126°W) throughout the past decade that provide useful cross validation and quantitative insight into the potential for stationary observing platforms such as TAO to incur sampling biases related to the strength of the EUC. This paper describes some essential sampling characteristics of the SEA dataset, compares SEA and TAO velocity measurements in the vicinity of the EUC, shares new insight into EUC characteristics and behavior only observable in repeat cross-equatorial sections, and estimates the sampling bias incurred by equatorial TAO moorings in their estimates of the velocity and transport of the EUC. The SEA high-resolution ADCP dataset compares well with concurrent TAO measurements (RMSE = 0.05 m s−1; R2 = 0.98), suggests that the EUC core meanders sinusoidally about the equator between ±0.4° latitude, and reveals a mean sampling bias of equatorial measurements (e.g., TAO) of the EUC’s zonal velocity of −0.14 ± 0.03 m s−1 as well as a ~10% underestimation of EUC volume transport. A bias-corrected monthly record and climatology of EUC strength at 140°W for 1990–2010 is presented.

Corresponding author address: Kristopher B. Karnauskas, Woods Hole Oceanographic Institution, 360 Woods Hole Rd., MS 23, Woods Hole, MA 02544. E-mail: kk@whoi.edu
Save