On the Challenges of Tomography Retrievals of a 2D Water Vapor Field Using Ground-Based Microwave Radiometers: An Observation System Simulation Experiment

Véronique Meunier Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Véronique Meunier in
Current site
Google Scholar
PubMed
Close
,
David D. Turner National Oceanic and Atmospheric Administration/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
, and
Pavlos Kollias Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Pavlos Kollias in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two-dimensional water vapor fields were retrieved by simulated measurements from multiple ground-based microwave radiometers using a tomographic approach. The goal of this paper was to investigate how the various aspects of the instrument setup (number and spacing of elevation angles and of instruments, number of frequencies, etc.) affected the quality of the retrieved field. This was done for two simulated atmospheric water vapor fields: 1) an exaggerated turbulent boundary layer and 2) a simplified water vapor front. An optimal estimation algorithm was used to obtain the tomographic field from the microwave radiometers and to evaluate the fidelity and information content of this retrieved field.

While the retrieval of the simplified front was reasonably successful, the retrieval could not reproduce the details of the turbulent boundary layer field even using up to nine instruments and 25 elevation angles. In addition, the vertical profile of the variability of the water vapor field could not be captured. An additional set of tests was performed using simulated data from a Raman lidar. Even with the detailed lidar measurements, the retrieval did not succeed except when the lidar data were used to define the a priori covariance matrix. This suggests that the main limitation to obtaining fine structures in a retrieved field using tomographic retrievals is the definition of the a priori covariance matrix.

Corresponding author address: Véronique Meunier, Department of Atmospheric and Oceanic Sciences, McGill University, Burnside Hall, Room 945, 805 Sherbrook Street West, Montreal QC H3A 0B9, Canada. E-mail: veronique.meunier2@mcgill.ca

Abstract

Two-dimensional water vapor fields were retrieved by simulated measurements from multiple ground-based microwave radiometers using a tomographic approach. The goal of this paper was to investigate how the various aspects of the instrument setup (number and spacing of elevation angles and of instruments, number of frequencies, etc.) affected the quality of the retrieved field. This was done for two simulated atmospheric water vapor fields: 1) an exaggerated turbulent boundary layer and 2) a simplified water vapor front. An optimal estimation algorithm was used to obtain the tomographic field from the microwave radiometers and to evaluate the fidelity and information content of this retrieved field.

While the retrieval of the simplified front was reasonably successful, the retrieval could not reproduce the details of the turbulent boundary layer field even using up to nine instruments and 25 elevation angles. In addition, the vertical profile of the variability of the water vapor field could not be captured. An additional set of tests was performed using simulated data from a Raman lidar. Even with the detailed lidar measurements, the retrieval did not succeed except when the lidar data were used to define the a priori covariance matrix. This suggests that the main limitation to obtaining fine structures in a retrieved field using tomographic retrievals is the definition of the a priori covariance matrix.

Corresponding author address: Véronique Meunier, Department of Atmospheric and Oceanic Sciences, McGill University, Burnside Hall, Room 945, 805 Sherbrook Street West, Montreal QC H3A 0B9, Canada. E-mail: veronique.meunier2@mcgill.ca
Save
  • Bean, B. R., and Dutton E. J. , 1966: Radio Meteorology. U.S. Government Printing Office, 435 pp.

  • Bevis, M., Businger S. , Herring T. A. , Rocken C. , Anthes R. A. , and Ware R. H. , 1992: GPS meteorology: Remote sensing of atmospheric water vapor using global positioning system. J. Geophys. Res., 97, 15 78715 801, doi:10.1029/92JD01517.

    • Search Google Scholar
    • Export Citation
  • Bobylev, L. P., 1997: Retrieval of liquid water distribution in convective clouds using microwave computerized tomography. IGARSS ’97: 1997 IEEE International Geoscience and Remote Sensing Symposium; Remote Sensing—A Scientific Vision of Sustainable Development, T. I. Stein, Ed., Vol. 2, IEEE, 830–832.

  • Cadeddu, M. P., Liljegren J. C. , and Turner D. D. , 2013: The Atmospheric Radiation Measurement (ARM) program network of microwave radiometers: Instrumentation, data, and retrievals. Atmos. Meas. Tech. Discuss., 6, 37233763, doi:10.5194/amtd-6-3723-2013.

    • Search Google Scholar
    • Export Citation
  • Crewell, S., and Löhnert U. , 2003: Accuracy of cloud liquid water path from ground-based microwave radiometry 2. Sensor accuracy and synergy. Radio Sci., 38, 8042, doi:10.1029/2002RS002634.

    • Search Google Scholar
    • Export Citation
  • Drake, J. F., and Warner J. , 1988: A theoretical study of the accuracy of tomographic retrieval of cloud liquid with an airborne radiometer. J. Atmos. Oceanic Technol., 5, 844856, doi:10.1175/1520-0426(1988)005<0844:ATSOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains. J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Fleming, H. E., 1982: Satellite remote sensing by the technique of computed tomography. J. Appl. Meteor., 21, 15381549, doi:10.1175/1520-0450(1982)021<1538:SRSBTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., Blair F. H. , Bisson S. E. , and Turner D. D. , 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 49794990, doi:10.1364/AO.37.004979.

    • Search Google Scholar
    • Export Citation
  • Han, Y., and Westwater E. R. , 1995: Remote sensing of tropospheric water vapor and cloud liquid water by integrated ground-based sensors. J. Atmos. Oceanic Technol., 12, 10501059, doi:10.1175/1520-0426(1995)012<1050:RSOTWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, Y., Snider J. B. , Westwater E. R. , Mefi S. H. , and Ferrare R. A. , 1994: Observations of water vapor by ground-based microwave radiometers and Raman lidar. J. Geophys. Res., 99, 18 69518 702, doi:10.1029/94JD01487.

    • Search Google Scholar
    • Export Citation
  • Hardesty, R. M., and Hoff R. M. , Eds., 2012: Thermodynamic Profiling Technologies Workshop report to the National Science Foundation and the National Weather Service. NCAR Tech. Note NCAR/TN-488+STR, 80 pp.

  • Huang, D., Liu Y. , and Wiscombe W. , 2008: Determination of cloud liquid water distribution using 3D cloud tomography. J. Geophys. Res., 113, D13201, doi:10.1029/2007JD009133.

    • Search Google Scholar
    • Export Citation
  • Huang, D., Gasiewski A. , and Wiscome W. , 2010: Tomographic retrieval of cloud liquid water fields from a single scanning microwave radiometer aboard a moving platform—Part 1: Field trial results from the Wakasa Bay experiment. Atmos. Chem. Phys., 10, 66856697, doi:10.5194/acp-10-6685-2010.

    • Search Google Scholar
    • Export Citation
  • Iturbide-Sanchez, F., Reising S. C. , and Padmanabhan S. , 2007: A miniaturized spectrometer radiometer based on MMIC technology for tropospheric water vapor profiling. IEEE Trans. Geosci. Remote Sens., 45, 21812194, doi:10.1109/TGRS.2007.898444.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., 1989: MPM—An atmospheric millimeter-wave propagation model. J. Infrared and Mill. Waves, 10, 631650, doi:10.1007/BF01009565.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., Crewell S. , and Simmer C. , 2004: An integrated approach toward retrieving physically consistent profiles of temperature, humidity, and cloud liquid water. J. Appl. Meteor., 43, 12951307, doi:10.1175/1520-0450(2004)043<1295:AIATRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., Turner D. D. , and Crewell S. , 2009: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions. J. Appl. Meteor. Climatol., 48, 10171032, doi:10.1175/2008JAMC2060.1.

    • Search Google Scholar
    • Export Citation
  • Luna, R. E., and Church H. W. , 1974: Estimation of long-term concentrations using a “universal” wind speed distribution. J. Appl. Meteor., 13, 910916, doi:10.1175/1520-0450(1974)013<0910:EOLTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masutani, M., and Coauthors, 2010: Observing system simulation experiments. Data Assimilation: Making Sense of Observations, W. A. Lahoz, B. Khatattov, and R. Ménard, Eds., Springer, 647–679.

  • Meunier, V., Löhnert U. , Kollias P. , and Crewell S. , 2013: Biases caused by the instrument bandwidth and beam width on simulated brightness temperature measurements from scanning microwave radiometers. Atmos. Meas. Tech.,6, 11711187, doi:10.5194/amt-6-1171-2013.

    • Search Google Scholar
    • Export Citation
  • Padmanabhan, S., Reising S. C. , Vivekanandan J. , and Iturbide-Sanchez F. , 2009: Retrieval of atmospheric water vapor density with fine spatial resolution using three-dimensional tomographic inversion of microwave brightness temperatures measured by a network of scanning compact radiometers. IEEE Trans. Geosci. Remote Sens., 47, 37083721, doi:10.1109/TGRS.2009.2031107.

    • Search Google Scholar
    • Export Citation
  • Radiometer Physics GmbH, 2011: Technical instrument manual: Description of instrument technology. Radiometer Physics GmbH Rep. RPG-MWR-STD, 45 pp. [Available online at http://www.radiometer-physics.de/rpg/html/docs/RPG_MWR_STD_Technical_Manual.pdf.]

  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci., 33, 919928, doi:10.1029/98RS01182.

    • Search Google Scholar
    • Export Citation
  • Schween, J. H., Crewell S. , and Löhnert U. , 2011: Horizontal-humidity gradient from one single-scanning microwave radiometer. IEEE Geosci. Remote Sens. Lett., 8, 336340, doi:10.1109/LGRS.2010.2072981.

    • Search Google Scholar
    • Export Citation
  • Steinke, S., Löhnert U. , Crewell S. , and Lui S. , 2014: Water vapor tomography with two microwave radiometers. IEEE Geosci. Remote Sens. Lett., 11, 419423, doi:10.1109/LGRS.2013.2264354.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Goldsmith J. E. M. , 1999: Twenty-four Raman lidar water vapor measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods. J. Atmos. Oceanic Technol., 16, 10621076, doi:10.1175/1520-0426(1999)016<1062:TFHRLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Feltz W. F. , and Ferrare R. A. , 2000: Continuous water vapor profiles from operational ground-based active and passive remote sensors. Bull. Amer. Meteor. Soc., 81, 13011317, doi:10.1175/1520-0477(2000)081<1301:CWBPFO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Clough S. A. , Liljegren J. C. , Clothiaux E. E. , Cady-Pereira K. , and Gaustad K. L. , 2007: Retrieving liquid water path and precipitable water vapor from Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, doi:10.1109/TGRS.2007.903703.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Cadeddu M. P. , Löhnert U. , Crewell S. , and Vogelmann A. M. , 2009: Modifications to the water continuum in the microwave suggested by ground-based 150-GHz observations. IEEE Trans. Geosci. Remote Sens., 47, 33263109, doi:10.1109/TGRS.2009.2022262.

    • Search Google Scholar
    • Export Citation
  • Warner, J., Drake J. F. , and Krehbiel P. R. , 1985: Determination of cloud liquid water distribution by inversion of radiometric data. J. Atmos. Oceanic Technol., 2, 293303, doi:10.1175/1520-0426(1985)002<0293:DOCLWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Warner, J., Drake J. F. , and Snider J. B. , 1986: Liquid water distribution obtained from coplanar scanning radiometers. J. Atmos. Oceanic Technol., 3, 542546, doi:10.1175/1520-0426(1986)003<0542:LWDOFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Wulfmeyer V. , Wakimoto R. M. , Hardesty R. M. , Wilson J. W. , and Banta R. M. , 1999: NCAR–NOAA lower-tropospheric water vapor workshop. Bull. Amer. Meteor. Soc., 80, 23392357, doi:10.1175/1520-0477(1999)080<2339:NNLTWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Bösenberg J. , 1998: Ground-based differential absorption lidar for water-vapor profiling: Assessment of accuracy, resolution, and meteorological applications. Appl. Opt., 37, 38253844, doi:10.1364/AO.37.003825.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., Pal S. , Turner D. D. , and Wagner E. , 2010: Can water vapor Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Bound.-Layer Meteor., 136, 253284, doi:10.1007/s10546-010-9494-z.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1020 773 54
PDF Downloads 213 54 0