DCC Radiometric Sensitivity to Spatial Resolution, Cluster Size, and LWIR Calibration Bias Based on VIIRS Observations

Wenhui Wang Earth Resource Technology, Inc., Laurel, Maryland

Search for other papers by Wenhui Wang in
Current site
Google Scholar
PubMed
Close
and
Changyong Cao NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland

Search for other papers by Changyong Cao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Visible and Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership satellite brings new opportunities for improving scientists’ understanding of deep convective cloud (DCC) radiometry with multiple bands in the visible (VIS), near-infrared (NIR), and longwave infrared (LWIR) spectrum. This paper investigated the radiometric sensitivity of DCC reflectance to spatial resolution, brightness temperature of the LWIR band centered at ~11 μm (TB11), TB11 calibration bias, and cluster size using VIIRS VIS (M5), NIR (M7 and I2), and LWIR (M15 and I5) observations at 375- and 750-m spatial resolutions. The mean and mode of the monthly probability distribution functions of DCC reflectance are used as two important indices in using DCC for calibration, and the results show that the onboard radiometric calibration of M5, M7, and I2 are stable during May 2013–April 2014 despite severe instrument responsivity degradations. The standard deviations of the mean and mode of monthly DCC reflectance are 0.5% and 0.2%, respectively, for all bands. It was found that a TB11 calibration bias on the order of 0.5 K has minimal impact on monthly DCC reflectance, especially when the mode method is used. The mean and mode of VIS and NIR DCC reflectance are functions of spatial resolution, TB11 threshold, and DCC cluster size in all seasons. However, the mode of DCC reflectance is more stable than the mean in terms of all three factors. Therefore, the mode is more suitable as an indicator of calibration stability for individual VIS and NIR bands.

Corresponding author address: Dr. Wenhui Wang, ERT at NOAA/NESDIS/STAR, 5830 University Research Ct., 2nd Floor, Cubicle #2664, College Park, MD 20740. E-mail: wenhui.wang@noaa.gov

Abstract

The Visible and Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership satellite brings new opportunities for improving scientists’ understanding of deep convective cloud (DCC) radiometry with multiple bands in the visible (VIS), near-infrared (NIR), and longwave infrared (LWIR) spectrum. This paper investigated the radiometric sensitivity of DCC reflectance to spatial resolution, brightness temperature of the LWIR band centered at ~11 μm (TB11), TB11 calibration bias, and cluster size using VIIRS VIS (M5), NIR (M7 and I2), and LWIR (M15 and I5) observations at 375- and 750-m spatial resolutions. The mean and mode of the monthly probability distribution functions of DCC reflectance are used as two important indices in using DCC for calibration, and the results show that the onboard radiometric calibration of M5, M7, and I2 are stable during May 2013–April 2014 despite severe instrument responsivity degradations. The standard deviations of the mean and mode of monthly DCC reflectance are 0.5% and 0.2%, respectively, for all bands. It was found that a TB11 calibration bias on the order of 0.5 K has minimal impact on monthly DCC reflectance, especially when the mode method is used. The mean and mode of VIS and NIR DCC reflectance are functions of spatial resolution, TB11 threshold, and DCC cluster size in all seasons. However, the mode of DCC reflectance is more stable than the mean in terms of all three factors. Therefore, the mode is more suitable as an indicator of calibration stability for individual VIS and NIR bands.

Corresponding author address: Dr. Wenhui Wang, ERT at NOAA/NESDIS/STAR, 5830 University Research Ct., 2nd Floor, Cubicle #2664, College Park, MD 20740. E-mail: wenhui.wang@noaa.gov
Save
  • Aumann, H. H., Pagano T. , and Hofstadter M. , 2007: Observations of deep convective clouds as stable reflected light standard for climate research: AIRS evaluation. Atmospheric and Environmental Remote Sensing Data Processing and Utilization III: Readiness for GEOSS, M. D. Goldberg et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6684), 668410, doi:10.1117/12.734599.

  • Cao, C., and Coauthors, 2013: Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos.,118, 11 664–11 678, doi:10.1002/2013JD020418.

  • Cao, C., De Luccia F. J. , Xiong X. , Wolfe R. , and Weng F. , 2014: Early on-orbit performance of the Visible Infrared Imaging Radiometer Suite onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. IEEE Trans. Geosci. Remote Sens.,52, 1142–1156, doi:10.1109/TGRS.2013.2247768.

    • Search Google Scholar
    • Export Citation
  • Cardema, J. C., Rausch K. W. , Lei N. , Moyer D. I. , and De Luccia F. J. , 2012: Operational calibration of VIIRS reflective solar band sensor data records. Earth Observing Systems XVII, J. J. Butler, X. Xiong, and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8510), 851019, doi:10.1117/12.932221.

  • Chen, L., Hu X. , Xu N. , and Zhang P. , 2013: The application of deep convective clouds in the calibration and response monitoring of the reflective solar bands of FY-3A/MERSI (Medium Resolution Spectral Imager). Remote Sens., 5, 69586975, doi:10.3390/rs5126958.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., Minnis P. , and Nguyen L. , 2004: On the use of deep convective clouds to calibrate AVHRR data. Earth Observing Systems IX, W. L. Barnes and J. J. Butler, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5542), 281, doi:10.1117/12.560047.

  • Doelling, D. R., Morstad D. , Scarino B. R. , Bhatt R. , and Gopalan A. , 2013: The characterization of deep convective clouds as an invariant calibration target and as a visible calibration technique. IEEE Trans. Geosci. Remote Sens.,51, 1147–1159, doi:10.1109/TGRS.2012.2225066.

    • Search Google Scholar
    • Export Citation
  • Fougnie, B., and Bach R. , 2009: Monitoring of radiometric sensitivity changes of space sensors using deep convective clouds: Operational application to PARASOL. IEEE Trans. Geosci. Remote Sens.,47, 851–861, doi:10.1109/TGRS.2008.2005634.

    • Search Google Scholar
    • Export Citation
  • Freeman, H., 1961: On the encoding of arbitrary geometric configurations . IRE Trans. Electron. Comput.,EC-10, 260–268, doi:10.1109/TEC.1961.5219197.

    • Search Google Scholar
    • Export Citation
  • Hong, G., Heygster G. , Notholt J. , and Buehler S. A. , 2008: Interannual to diurnal variations in tropical and subtropical deep convective clouds and convective overshooting from seven years of AMSU-B measurements. J. Climate, 21, 41684189, doi:10.1175/2008JCLI1911.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., Wielicki B. A. , Ping Y. , Stackhouse P. W. Jr., Lin B. , and Young D. F. , 2004: Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: Monitoring the stability of spaceborne measurements and assessing absorption anomaly. IEEE Trans. Geosci. Remote Sens.,42, 2594–2599, doi:10.1109/TGRS.2004.834765.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Kato S. , Loukachine K. , and Manalo-Smith N. , 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351, doi:10.1175/JTECH1712.1.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., Doelling D. R. , Nguyen L. , Miller W. F. , and Chakrapani V. , 2008: Assessment of the visible channel calibrations of the VIRS on TRMM and MODIS on Aqua and Terra. J. Atmos. Oceanic Technol., 25, 385400, doi:10.1175/2007JTECHA1021.1.

    • Search Google Scholar
    • Export Citation
  • Moeller, C., cited 2014: S-NPP VIIRS thermal emissive band (TEB) validation update. [Available online at http://www.star.nesdis.noaa.gov/star/documents/meetings/SNPPSDR2013/dayTwo/Moeller_VIIRS.pdf.]

  • NOAA, cited 2014: STAR Integrated Calibration/Validation System long-term monitoring. [Available online at http://www.star.nesdis.noaa.gov/icvs/status_NPP_VIIRS.php.]

  • Rausch, K., Houchin S. , Cardema J. , Moy G. , Haas E. , and De Luccia F. J. , 2013: Automated calibration of the Suomi National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) reflective solar bands. J. Geophys. Res. Atmos.,118, 13 434–13 442, doi:10.1002/2013JD020479.

  • Sohn, B. J., Ham S.-H. , and Yang P. , 2009: Possibility of the visible-channel calibration using deep convective clouds overshooting the TTL. J. Appl. Meteor. Climatol., 48, 22712283, doi:10.1175/2009JAMC2197.1.

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., Revercomb H. , Knuteson R. , Taylor J. , and Deslover D. , 2013a: Cal/Val of CrIS on Suomi-NPP: Intercalibration with AIRS, IASI, and VIIRS. Annual Symp. on Future Operational Environmental Satellite Systems, Austin, TX, Amer. Meteor. Soc., P700. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper224176.html.

  • Tobin, D. C., Revercomb H. , Taylor J. , Knuteson B. , DeSlover D. , Borg L. , and Martin G. , cited 2013b: CrIS radiometric calibration: Uncertainty estimates and evaluations. NOAA, 30 pp. [Available online at http://www.star.nesdis.noaa.gov/star/documents/meetings/SNPPSDR2013/dayOne/Tobin_UW_CrIS.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 937 570 25
PDF Downloads 230 50 0