Impact of Data Assimilation on ECCO2 Equatorial Undercurrent and North Equatorial Countercurrent in the Pacific Ocean

David Halpern Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by David Halpern in
Current site
Google Scholar
PubMed
Close
,
Dimitris Menemenlis Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Dimitris Menemenlis in
Current site
Google Scholar
PubMed
Close
, and
Xiaochun Wang University of California, Los Angeles, Los Angeles, California

Search for other papers by Xiaochun Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of data assimilation on the transports of eastward-flowing Equatorial Undercurrent (EUC) and North Equatorial Countercurrent (NECC) in the Pacific Ocean from 145°E to 95°W during 2004–05 and 2009–11 was assessed. Two Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2), solutions were analyzed: one with data assimilation and one without. Assimilated data included satellite observations of sea surface temperature and ocean surface topography, in which the sampling patterns were approximately uniform over the 5 years, and in situ measurements of subsurface salinity and temperature profiles, in which the sampling patterns varied considerably in space and time throughout the 5 years. Velocity measurements were not assimilated. The impact of data assimilation was considered significant when the difference between the transports computed with and without data assimilation was greater than 5.5 × 106 m3 s−1 (or 5.5 Sv; 1 Sv ≡ 106 m3 s−1) for the EUC and greater than 5.0 Sv for the NECC. In addition, the difference of annual-mean transports computed from 3-day-averaged data was statistically significant at the 95% level. The impact of data assimilation ranged from no impact to very substantial impact when data assimilation increased the EUC transport and decreased the NECC transport. The study’s EUC results had some correspondence with other studies and no simple agreement or disagreement pattern emerged among all studies of the impact of data assimilation. No comparable study of the impact of data assimilation on the NECC has been made.

Corresponding author address: David Halpern, Jet Propulsion Laboratory, California Institute of Technology, M/S 233-300, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: david.halpern@jpl.nasa.gov

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Abstract

The impact of data assimilation on the transports of eastward-flowing Equatorial Undercurrent (EUC) and North Equatorial Countercurrent (NECC) in the Pacific Ocean from 145°E to 95°W during 2004–05 and 2009–11 was assessed. Two Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2), solutions were analyzed: one with data assimilation and one without. Assimilated data included satellite observations of sea surface temperature and ocean surface topography, in which the sampling patterns were approximately uniform over the 5 years, and in situ measurements of subsurface salinity and temperature profiles, in which the sampling patterns varied considerably in space and time throughout the 5 years. Velocity measurements were not assimilated. The impact of data assimilation was considered significant when the difference between the transports computed with and without data assimilation was greater than 5.5 × 106 m3 s−1 (or 5.5 Sv; 1 Sv ≡ 106 m3 s−1) for the EUC and greater than 5.0 Sv for the NECC. In addition, the difference of annual-mean transports computed from 3-day-averaged data was statistically significant at the 95% level. The impact of data assimilation ranged from no impact to very substantial impact when data assimilation increased the EUC transport and decreased the NECC transport. The study’s EUC results had some correspondence with other studies and no simple agreement or disagreement pattern emerged among all studies of the impact of data assimilation. No comparable study of the impact of data assimilation on the NECC has been made.

Corresponding author address: David Halpern, Jet Propulsion Laboratory, California Institute of Technology, M/S 233-300, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: david.halpern@jpl.nasa.gov

This article is included in the Sixth WMO Data Assimilation Symposium Special Collection.

Save
  • Balmaseda, M. A., Mogensen K. , and Weaver A. T. , 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., 2007: The Global Ocean Data Assimilation System (GODAS) at NCEP. 11th Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, San Antonio, TX, Amer. Meteor. Soc., 3.3. [Available online at https://ams.confex.com/ams/87ANNUAL/techprogram/paper_119541.htm.]

  • Bell, M. J., Martin M. J. , and Nichols N. K. , 2004: Assimilation of data into an ocean model with systematic errors near the equator. Quart. J. Roy. Meteor. Soc., 130, 873893, doi:10.1256/qj.02.109.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 385–432.

  • Carton, J. A., Chepurin G. , Cao X. , and Giese B. , 2000: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309, doi:10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., deSzoeke R. A. , Schlax M. G. , El Naggar K. , and Siwertz N. , 1998: Geographical variability of the first baroclinic Rossby Radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chiswell, S. M., Donohue K. A. , and Wimbush M. , 1995: Variability in the central equatorial Pacific, 1985–1989. J. Geophys. Res., 100, 15 84915 863, doi:10.1029/95JC01379.

    • Search Google Scholar
    • Export Citation
  • Forget, G., 2010: Mapping ocean observations in a dynamical framework: A 2004–06 ocean atlas. J. Phys. Oceanogr., 40, 12011221, doi:10.1175/2009JPO4043.1.

    • Search Google Scholar
    • Export Citation
  • Forget, G., and Wunsch C. , 2007: Global hydrographic variability and the data weights in oceanic state estimates. J. Phys. Oceanogr., 37, 19972008, doi:10.1175/JPO3072.1.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, doi:10.1016/j.ocemod.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Halpern, D., Fukumori I. , Menemenlis D. , and Wang X. , 2013: Long range Kelvin wave propagation of transport variations in the Pacific Ocean equatorial currents: Part II. 2013 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract OS32A-03.

  • Hoteit, I., Cornuelle B. , and Heimbach P. , 2010: An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000. J. Geophys. Res., 115, C03001, doi:10.1029/2009JC005437.

    • Search Google Scholar
    • Export Citation
  • Huddleston, M. R., Bell M. J. , Martin M. J. , and Nichols N. K. , 2004: Assessment of wind-stress errors using bias corrected ocean data assimilation. Quart. J. Roy. Meteor. Soc., 130, 853871, doi:10.1256/qj.02.213.

    • Search Google Scholar
    • Export Citation
  • Hyder, P., Storkey D. , Blackley E. , Guiavarc’h C. , Siddorn J. , Martin M. , and Lea D. , 2012: Assessing equatorial surface currents in the FOAM global and Indian Ocean models against observations from the global tropical moored array. J. Oper. Oceanogr., 5, 2539.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., McPhaden M. J. , and Firing E. , 2001: Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr., 31, 839849, doi:10.1175/1520-0485(2001)031<0839:EPOHVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karspeck, A. R., Yeager S. , Danabasoglu G. , Hoar T. , Collins N. , Raeder K. , Anderson J. , and Tribbia J. , 2013: An ensemble adjustment Kalman filter for the CCSM4 ocean component. J. Climate, 26, 73927413, doi:10.1175/JCLI-D-12-00402.1.

    • Search Google Scholar
    • Export Citation
  • Kashino, Y., Espana N. , Syamsudin F. , Richards K. J. , Jensen T. , Dutrieux P. , and Ishida A. , 2009: Observations of the North Equatorial Current, Mindanao Current, and Kuroshio current system during the 2006/07 El Niño and 2007/08 La Niña. J. Oceanogr., 65, 325333, doi:10.1007/s10872-009-0030-z.

    • Search Google Scholar
    • Export Citation
  • Knox, R. A., and Halpern D. , 1982: Long range Kelvin wave propagation of transport variations in Pacific Ocean equatorial currents. J. Mar. Res., 40 (Suppl.), 329339.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., McWilliams J. C. , and Doney S. , 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lolk, N. K., 1992: Annual and longitudinal variations of the Pacific North Equatorial Countercurrent. Jet Propulsion Laboratory Tech. Rep. JPL-PUBL-92-8, 221 pp.

  • Martin, J. H., and Coauthors, 1994: Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371, 123129, doi:10.1038/371123a0.

    • Search Google Scholar
    • Export Citation
  • McCreary, J., 1976: Eastern tropical ocean response to changing wind systems: With application to El Niño. J. Phys. Oceanogr., 6, 632645, doi:10.1175/1520-0485(1976)006<0632:ETORTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean Global Atmosphere (TOGA) observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, doi:10.1029/97JC02906.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., Fukumori I. , and Lee T. , 2005: Using Green’s functions to calibrate an ocean general circulation model. Mon. Wea. Rev., 133, 12241240, doi:10.1175/MWR2912.1.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., Campin J.-M. , Heimbach P. , Hill C. , Lee T. , Nguyen A. , Schodlok M. , and Zhang H. , 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Ramonville Saint-Agne, France, 13–21.

    • Search Google Scholar
    • Export Citation
  • Mitchum, G. T., and Lukas R. , 1990: Westward propagation of annual sea level and wind signals in the western Pacific Ocean. J. Climate, 3, 11021110, doi:10.1175/1520-0442(1990)003<1102:WPOASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. International Geophysics Series, Vol. 46, Academic Press, 293 pp.

  • Qu, T., Mitsudera H. , and Yamagata T. , 1999: A climatology of the circulation and water mass distribution near the Philippine coast. J. Phys. Oceanogr., 29, 14881505, doi:10.1175/1520-0485(1999)029<1488:ACOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and Chelton D. B. , 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, doi:10.1175/2008JPO3881.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2009: Climatological mean and decadal change in surface ocean pCO2, and net sea–air flux over the global oceans. Deep-Sea Res. II, 56, 554577, doi:10.1016/j.dsr2.2008.12.009.

    • Search Google Scholar
    • Export Citation
  • Tollefson, J., 2014: El Niño monitoring system in failure mode. Nature, doi:10.1038/nature.2014.14582.

  • Tozuka, T., Kagimoto T. , Masumoto Y. , and Yamagata T. , 2002: Simulated multiscale variations in the western tropical Pacific: The Mindanao Dome revisited. J. Phys. Oceanogr., 32, 13381359, doi:10.1175/1520-0485(2002)032<1338:SMVITW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vernieres, G., Rienecker M. M. , Kovach R. , and Keppenne C. L. , 2012: The GEOS-iODAS: Description and evaluation. Technical Report Series on Global Modeling and Data Assimilation, Vol. 30, NASA Tech. Memo. NASA/TM-2012-104606, 61 pp.

  • Wunsch, C., and Heimbach P. , 2007: Practical global ocean state estimation. Physica D, 230, 197208, doi:10.1016/j.physd.2006.09.040.

  • Wunsch, C., Heimbach P. , Ponte R. M. , Fukumori I. , and the ECCO-GODAE Consortium Members, 2009: The global general circulation of the ocean estimated by the ECCO-Consortium. Oceanography, 22, 88103, doi:10.5670/oceanog.2009.41.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1965: Surface currents of the eastern tropical Pacific Ocean. Bull. - Inter-Amer. Trop. Tuna Comm., 9, 271304.

  • Wyrtki, K., and Kilonsky B. , 1984: Mean water and current structure during the Hawaii-to-Tahiti Shuttle Experiment. J. Phys. Oceanogr., 14, 242254, doi:10.1175/1520-0485(1984)014<0242:MWACSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., McCreary J. P. Jr., Kessler W. S. , and Kelly K. A. , 2000: Influence of equatorial dynamics on the Pacific North Equatorial Countercurrent. J. Phys. Oceanogr., 30, 31793190, doi:10.1175/1520-0485(2000)030<3179:IOEDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5216 4761 68
PDF Downloads 286 64 7