An Assessment of SAPHIR Calibration Using Quality Tropical Soundings

G. Clain Université Versailles St-Quentin, Sorbonne Universités, UPMC Université Paris 06, CNRS/INSU, LATMOS-IPSL, Guyancourt, France

Search for other papers by G. Clain in
Current site
Google Scholar
PubMed
Close
,
H. Brogniez Université Versailles St-Quentin, Sorbonne Universités, UPMC Université Paris 06, CNRS/INSU, LATMOS-IPSL, Guyancourt, France

Search for other papers by H. Brogniez in
Current site
Google Scholar
PubMed
Close
,
V. H. Payne Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by V. H. Payne in
Current site
Google Scholar
PubMed
Close
,
V. O. John Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by V. O. John in
Current site
Google Scholar
PubMed
Close
, and
M. Luo Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by M. Luo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) instrument on board the Megha-Tropiques (MT) platform is a cross-track, multichannel microwave humidity sounder with six channels near the 183.31-GHz water vapor absorption line, a maximum scan angle of 42.96° (resulting in a maximum incidence angle of 50.7°), a 1700-km-wide swath, and a footprint resolution of 10 km at nadir. SAPHIR L1A2 brightness temperature (BT) observations have been compared to BTs simulated by the radiative transfer model (RTM) Radiative Transfer for the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (RTTOV-10), using in situ measurements from radiosondes as input. Selected radiosonde humidity observations from the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year (CINDY)–Dynamics of the Madden–Julian Oscillation (DYNAMO) campaign (September 2011–March 2012) were spatiotemporally collocated with MT overpasses. Although several sonde systems were used during the campaign, all of the sites selected for this study used the Vaisala RS92-SGPD system and were chosen in order to avoid discrepancies in data quality and biases.

To interpret the results of the comparison between the sensor data and the RTM simulations, uncertainties associated with the data processing must be propagated throughout the evaluation. The magnitude of the bias was found to be dependent on the observing channel, increasing from 0.18 K for the 183.31 ± 0.2-GHz channel to 2.3 K for the 183.31 ± 11-GHz channel. Uncertainties and errors that could impact the BT biases were investigated. These can be linked to the RTM input and design, the radiosonde observations, the chosen methodology of comparison, and the SAPHIR instrument itself.

Current affiliation: MODEM, Ury, France.

Corresponding author address: Hélène Brogniez, LATMOS, 11 Boulevard d’Alembert, 78280 Guyancourt, France. E-mail: helene.brogniez@latmos.ipsl.fr

Abstract

The Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) instrument on board the Megha-Tropiques (MT) platform is a cross-track, multichannel microwave humidity sounder with six channels near the 183.31-GHz water vapor absorption line, a maximum scan angle of 42.96° (resulting in a maximum incidence angle of 50.7°), a 1700-km-wide swath, and a footprint resolution of 10 km at nadir. SAPHIR L1A2 brightness temperature (BT) observations have been compared to BTs simulated by the radiative transfer model (RTM) Radiative Transfer for the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (RTTOV-10), using in situ measurements from radiosondes as input. Selected radiosonde humidity observations from the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year (CINDY)–Dynamics of the Madden–Julian Oscillation (DYNAMO) campaign (September 2011–March 2012) were spatiotemporally collocated with MT overpasses. Although several sonde systems were used during the campaign, all of the sites selected for this study used the Vaisala RS92-SGPD system and were chosen in order to avoid discrepancies in data quality and biases.

To interpret the results of the comparison between the sensor data and the RTM simulations, uncertainties associated with the data processing must be propagated throughout the evaluation. The magnitude of the bias was found to be dependent on the observing channel, increasing from 0.18 K for the 183.31 ± 0.2-GHz channel to 2.3 K for the 183.31 ± 11-GHz channel. Uncertainties and errors that could impact the BT biases were investigated. These can be linked to the RTM input and design, the radiosonde observations, the chosen methodology of comparison, and the SAPHIR instrument itself.

Current affiliation: MODEM, Ury, France.

Corresponding author address: Hélène Brogniez, LATMOS, 11 Boulevard d’Alembert, 78280 Guyancourt, France. E-mail: helene.brogniez@latmos.ipsl.fr
Save
  • Aires, F., Prigent C. , Bernardo F. , Jiménez C. , Saunders R. , and Brunel P. , 2011: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690699, doi:10.1002/qj.803.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., Dee D. , Fielding K. , Fuentes M. , Kållberg P. , Kobayashi S. , and Uppala S. , 2009: The ERA-Interim archive. Version 1, ERA Report Series 1, ECMWF Tech. Rep., 16 pp. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/era/era_report_series/RS_1.pdf.]

  • Brogniez, H., Roca R. , and Picon L. , 2006: A clear-sky radiance archive from Meteosat “water vapor” observations. J. Geophys. Res., 111, D21109, doi:10.1029/2006JD007238.

    • Search Google Scholar
    • Export Citation
  • Brogniez, H., Kirstetter P.-E. , and Eymard L. , 2013: Expected improvements in the atmospheric humidity profile retrieval using the Megha-Tropiques microwave payload. Quart. J. Roy. Meteor. Soc., 139, 842–851, doi:10.1002/qj.1869.

    • Search Google Scholar
    • Export Citation
  • Buehler, S. A., and John V. O. , 2005: A simple method to relate microwave radiances to upper tropospheric humidity. J. Geophys. Res., 110, D02110, doi:10.1029/2004JD005111.

    • Search Google Scholar
    • Export Citation
  • Buehler, S. A., Kuvatov M. , John V. O. , Leiterer U. , and Dier H. , 2004: Comparison of microwave satellite humidity data and radiosonde profile: A case study. J. Geophys. Res., 109, D13103, doi:10.1029/2004JD004605.

    • Search Google Scholar
    • Export Citation
  • Buehler, S. A., Eriksson P. , Kuhn T. , von Engeln A. , and Verdes C. , 2005: ARTS, the Atmospheric Radiative Transfer Simulator. J. Quant. Spectrosc. Radiat. Transfer, 91, 6593, doi:10.1016/j.jqsrt.2004.05.051.

    • Search Google Scholar
    • Export Citation
  • Buehler, S. A., Courcoux N. , and John V. O. , 2006: Radiative transfer calculations for a passive microwave satellite sensor: Comparing a fast model and a line-by-line model. J. Geophys. Res., 111, D20304, doi:10.1029/2005JD006552.

    • Search Google Scholar
    • Export Citation
  • Cadeddu, M. P., Payne V. H. , Clough S. A. , Cady-Pereira K. E. , and Liljegren J. C. , 2007: Effect of the oxygen line-parameter modeling on temperature and humidity retrievals from ground-based microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 22162223, doi:10.1109/TGRS.2007.894063.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Han Y. , Van Delst P. , and Weng F. , 2010: On water vapor Jacobian in fast radiative transfer model. J. Geophys. Res., 115, D12303, doi:10.1029/2009JD013379.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., Haertel P. H. , Johnson R. H. , Wang J. , and Loehrer S. , 2012: Developing high-quality field program sounding datasets. Bull. Amer. Meteor. Soc., 93, 325336, doi:10.1175/BAMS-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741–764, doi:10.1175/JTECH-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Cimini, D., Nasir F. , Westwater E. R. , Payne V. H. , Turner D. D. , Mlawer E. J. , Exner M. L. , and Cadeddu M. P. , 2009: Comparison of ground-based millimeter wave observations in the Arctic winter. IEEE Trans. Geosci. Remote Sens., 47, 3098, doi:10.1109/TGRS.2009.2020743.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Beers Y. , Klein J. P. , and Rothman L. S. , 1973: Dipole moment of water from Stark measurements of H2O, HDO and D2O. J. Chem. Phys., 59, 22542259, doi:10.1063/1.1680328.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Shephard M. W. , Mlawer E. , Delamere J. S. , Iacono M. , Cady-Pereira K. E. , Boukabara S. , and Brown P. D. , 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, doi:10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Desbois, M., Capderou M. , Eymard L. , Roca R. , Viltard N. , Viollier M. , and Karouche N. , 2007: Megha-Tropiques: Un satellite hydrométéorologique franco-indien. Meteorologie, 57, 1927, doi:10.4267/2042/18185.

    • Search Google Scholar
    • Export Citation
  • English, S. J., and Hewison T. J. , 1998: A fast generic millimeter-wave emissivity model. Microwave Remote Sensing of the Atmosphere and Environment, T. Hayasaka et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 3503), 288, doi:10.1117/12.319490.

  • Eriksson, P., Buehler S. A. , Davis C. P. , Emde C. , and Lemke O. , 2011: ARTS, the atmospheric radiative transfer simulator, version 2. J. Quant. Spectrosc. Radiat. Transfer,112, 1551–1558, doi:10.1016/j.jqsrt.2011.03.001.

  • Eymard, L., and Coauthors, 2002: The SAPHIR humidity sounder. Notes des Activités Instrumentales de l’IPSL 24, 17 pp.

  • Fetzer, E. J., and Coauthors, 2003: AIRS/AMSU/HSB validation. IEEE Trans. Geosci. Remote Sens., 41, 418431, doi:10.1109/TGRS.2002.808293.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., Lambrigstenm B. H. , Eldering A. , Aumann H. H. , and Chahine M. T. , 2006: Biases in total precipitable water vapor climatologies from the Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer. J. Geophys. Res., 111, D09S16, doi:10.1029/2005JD006598.

    • Search Google Scholar
    • Export Citation
  • Gohil, B. S., Gairola R. , Mathur A. , Varma A. , Mahesh C. , Gangwar R. , and Pal P. , 2013: Algorithms for retrieving geophysical parameters from the MADRAS and SAPHIR sensors of the Megha-Tropiques satellite: Indian scenario. Quart. J. Roy. Meteor. Soc., 139, 954963, doi:10.1002/qj.2041.

    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., Crosby D. S. , and Zhou L. , 2001: The limb adjustment of AMSU-A observations: Methodology and validation. J. Appl. Meteor., 40, 7083, doi:10.1175/1520-0450(2001)040<0070:TLAOAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., and Christopher S. A. , 2002: Effect of cold clouds on satellite measurements near 183 GHz. J. Geophys. Res., 107, 4170, doi:10.1029/2000JD000258.

    • Search Google Scholar
    • Export Citation
  • Hong, G., Heygster G. , Miao J. , and Kunzi K. , 2005a: Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J. Geophys. Res.,110, D05205, doi:10.1029/2004JD004949.

  • Hong, G., Heygster G. , Miao J. , and Kunzi K. , 2005b: Sensitivity of microwave brightness temperatures to hydrometeors in a tropical deep convective cloud system at 89–190 GHz. Radio Sci., 40, RS4003, doi:10.1029/2004RS003129.

    • Search Google Scholar
    • Export Citation
  • Immler, F. J., Dykema J. , Gardiner T. , Whiteman D. N. , Thorne P. W. , and Vömel H. , 2010: Reference Quality Upper-Air Measurements: Guidance for developing GRUAN data products. Atmos. Meas. Tech., 3, 12171231, doi:10.5194/amt-3-1217-2010.

    • Search Google Scholar
    • Export Citation
  • John, V. O., and Buehler S. A. , 2004: The impact of ozone lines on AMSU-B radiances. Geophys. Res. Lett., 31, L21108, doi:10.1029/2004GL021214.

    • Search Google Scholar
    • Export Citation
  • John, V. O., Holl G. , Allan R. P. , Buehler S. A. , Parker D. E. , and Soden B. J. , 2011: Clear-sky biases in satellite infrared estimates of upper tropospheric humidity and its trends. J. Geophys. Res., 116, D14108, doi:10.1029/2010JD015355.

    • Search Google Scholar
    • Export Citation
  • John, V. O., Holl G. , Atkinson N. , and Buehler S. A. , 2013: Monitoring scan asymmetry of microwave humidity sounding channels using simultaneous all angle collocations (SAACs). J. Geophys. Res. Atmos.,118, 15361545, doi:10.1002/jgrd.50154.

    • Search Google Scholar
    • Export Citation
  • Karbou, F., Aires F. , Prigent C. , and Eymard L. , 2005: Potential of Advanced Microwave Sounding Unit-A (AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over land. J. Geophys. Res., 110, D07109, doi:10.1029/2004JD005318.

    • Search Google Scholar
    • Export Citation
  • Karouche, N., Goldstein C. , Rosak A. , Malassingne C. , and Raju G. , 2012: MEGHA-TROPIQUES satellite mission: In flight performance results. 2012 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, IEEE, 4684–4687, doi:10.1109/IGARSS.2012.6350420.

  • Kottayil, A., Buehler S. A. , John V. , Miloshevich L. , Milz M. , and Holl G. , 2012: On the importance of Vaisala RS92 radiosonde humidity corrections for a better agreement between measured and modeled satellite radiances. J. Atmos. Oceanic Technol., 29, 248259, doi:10.1175/JTECH-D-11-00080.1.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., and Gahrs G. E. , 2000: The “clear-sky bias” of TOVS upper-tropospheric humidity. J. Climate, 13, 40344041, doi:10.1175/1520-0442(2000)013<4034:TCSBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., 1989: MPM—An atmospheric millimeter-wave propagation model. Int. J. Infrared Millimeter Waves, 10, 631650, doi:10.1007/BF01009565.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., Rosenkranz P. W. , and Hufford G. A. , 1992: Atmospheric 60-GHz oxygen spectrum: New laboratory measurements and line parameters. J. Quant. Spectrosc. Radiat. Transfer, 48, 629643, doi:10.1016/0022-4073(92)90127-P.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., Hufford G. A. , and Cotton M. G. , 1993: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. Atmospheric propagation effects through natural and man-made obscurants for visible to mm-wave radiation, AGARD Conference Proceedings 542, AGARD-CP-542, 3-1–3-10. [Available online at http://www.dtic.mil/dtic/tr/fulltext/u2/a276919.pdf.]

  • Miloshevich, L. M., Paukkunen A. , Vömel H. , and Oltmans S. , 2004: Development and validation of a time lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol., 21, 13051327, doi:10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Vömel H. , Whiteman D. N. , Lesht B. M. , Schmidlin F. J. , and Russo F. , 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res., 111, D09S10, doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., Vömel H. , Whitman D. N. , and Leblanc T. , 2009: Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res., 114, D11305, doi:10.1029/2008JD011565.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Payne V. H. , Moncet J.-L. , Delamere J. S. , Alvarado M. J. , and Tobin D. C. , 2012: Development and evaluation of the MT_CKD model of continuum absorption. Philos. Trans. Roy. Soc. London, A370, 25202556, doi:10.1098/rsta.2011.0295.

    • Search Google Scholar
    • Export Citation
  • Moradi, I., 2014: Inter-calibration of observations from SAPHIR and ATMS instruments. GSICS Quarterly, Vol. 8, No. 1, GSICS Coordination Center, College Park, MD, 1–2, doi:10.7289/V55H7D64.

    • Search Google Scholar
    • Export Citation
  • Moradi, I., Soden B. , Ferraro R. , Arkin P. , and Vömel H. , 2013: Assessing the quality of humidity measurements from global operational radiosonde sensors. J. Geophys. Res. Atmos.,118, 8040–8053, doi:10.1002/jgrd.50589.

    • Search Google Scholar
    • Export Citation
  • Nash, J., Oakley T. , Vömel H. , and Wei L. , 2011: WMO intercomparison of high quality radiosonde systems. IOM Rep. 107, WMO/TD-1580, 238 pp. [Available online at http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-107_Yangjiang/IOM-107_Yangjiang.zip.]

  • Payne, V. H., Delamere J. S. , Cady-Pereira K. E. , Gamache R. R. , Moncet J.-L. , Mlawer E. J. , and Clough S. A. , 2008: Air-broadened half-widths of the 22- and 183-GHz water-vapor lines. IEEE Trans. Geosci. Remote Sens., 46, 36013617, doi:10.1109/TGRS.2008.2002435.

    • Search Google Scholar
    • Export Citation
  • Payne, V. H., Mlawer E. J. , Cady-Pereira K. E. , and Moncet J.-L. , 2011: Water vapor continuum absorption in the microwave. IEEE Trans. Geosci. Remote Sens., 49, 21942208, doi:10.1109/TGRS.2010.2091416.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and Oort A. H. , 1996: The climatology of relative humidity in the atmosphere. J. Climate, 9, 34433463, doi:10.1175/1520-0442(1996)009<3443:TCORHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Aires F. , and Rossow W. , 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15731584, doi:10.1175/BAMS-87-11-1573.

    • Search Google Scholar
    • Export Citation
  • Prigent C., Jaumouille E. , Chevallier F. , and Aires F. , 2008: A parameterization of the microwave land surface emissivity between 19 and 100 GHz, anchored to satellite-derived estimates. IEEE Trans. Geosci. Remote Sens.,46, 344–352, doi:10.1109/TGRS.2007.908881.

  • Roca, R., and Coauthors, 2010: On the water and energy cycles in the tropics. C. R. Geosci., 342, 390402, doi:10.1016/j.crte.2010.01.003.

    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., 1993: Absorption of microwaves by atmospheric gases. Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, Ed., Wiley Series in Remote Sensing and Image Processing, Vol. 6, John Wiley and Sons, 37–90.

  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci.,33, 919–928, doi:10.1029/98RS01182; Corrigendum, 34, 1025, doi:10.1029/1999RS900020.

  • Saunders, R., Matricardi M. , and Brunel P. , 1999: A fast radiative transfer model for assimilation of satellite radiance observations—RTTOV-5. ECMWF Research Dept. Tech. Memo. 282, 29 pp. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/001-300/tm282.pdf.]

  • Saunders, R., and Coauthors, 2012: RTTOV-10 science and validation report. NWP SAF Doc. NWPSAF-MO-TV-023, Version 1.11, 31 pp. [Available online at http://nwpsaf.eu/deliverables/rtm/docs_rttov10/rttov10_svr_1.11.pdf.]

  • Seidel, D. J., and Coauthors, 2009: Reference upper-air observations for climate: Rationale, progress, and plans. Bull. Amer. Meteor. Soc., 90, 361369, doi:10.1175/2008BAMS2540.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and Braswell W. D. , 1997: How dry is the tropical free troposphere? Implications for global warming theory. Bull. Amer. Meteor. Soc., 78, 10971106, doi:10.1175/1520-0477(1997)078<1097:HDITTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Student, 1908: The probable error of a mean. Biometrika,6, 1–25.

  • Tobin, D., and Coauthors, 2006: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111, D09514, doi:10.1029/2005JD006103.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., and Coauthors, 2007: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953963, doi:10.1175/JTECH2019.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Zhang L. , Dai A. , Immler F. , Sommer M. , and Voemel H. , 2013: Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data. J. Atmos. Oceanic Technol., 30, 197214, doi:10.1175/JTECH-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T., Brogniez H. , Datta S. , Liinwood Jones W. , Payne V. , Stocker E. , and Wang J. , 2013: The use of SAPHIR on Megha-Tropiques for intercalibration of polar-orbiting microwave water vapor sounders. 2013 EUMETSAT Meteorological Satellite Conf./ 19th American Meteorological Society Satellite Meteorology, Oceanography, and Climatology Conf., Vienna, Austria, EUMETSAT and Amer. Meteor. Soc., 272. [Available online at www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_2013_ABSTRACTS&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Yoneyama, K., Hanyu M. , Yoshiura F. , Sueyoshi S. , and Katsumat M. , 2002: Radiosonde observation from the ship in the tropical region. Report of the Japan Agency for Marine-Earth Science and Technology (JAMSTECR), No. 45, JAMSTEC, Yokosuka, Japan, 31–39. [Available online at http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/JAM12-1_all.pdf.]

  • Yue, Q., Fetzer E. , Kahn B. H. , Wang S. , Mariponm G. , Guillaume A. , and Wilson B. , 2013: Cloud-state-dependent sampling in AIRS observations based on CloudSat cloud classification. J. Climate, 26, 83578377, doi:10.1175/JCLI-D-13-00065.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1466 1044 47
PDF Downloads 283 48 5