Description and Analysis of the Ocean Component of NOAA’s Operational Hurricane Weather Research and Forecasting Model (HWRF)

Richard M. Yablonsky Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Richard M. Yablonsky in
Current site
Google Scholar
PubMed
Close
,
Isaac Ginis Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Isaac Ginis in
Current site
Google Scholar
PubMed
Close
,
Biju Thomas Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Biju Thomas in
Current site
Google Scholar
PubMed
Close
,
Vijay Tallapragada NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Vijay Tallapragada in
Current site
Google Scholar
PubMed
Close
,
Dmitry Sheinin NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Dmitry Sheinin in
Current site
Google Scholar
PubMed
Close
, and
Ligia Bernardet NOAA/ESRL/Global Systems Division, and CIRES, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Ligia Bernardet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Princeton Ocean Model for Tropical Cyclones (POM-TC), a version of the three-dimensional primitive equation numerical ocean model known as the Princeton Ocean Model, was the ocean component of NOAA’s operational Hurricane Weather Research and Forecast Model (HWRF) from 2007 to 2013. The coupled HWRF–POM-TC system facilitates accurate tropical cyclone intensity forecasts through proper simulation of the evolving SST field under simulated tropical cyclones. In this study, the 2013 operational version of HWRF is used to analyze the POM-TC ocean temperature response in retrospective HWRF–POM-TC forecasts of Atlantic Hurricanes Earl (2010), Igor (2010), Irene (2011), Isaac (2012), and Leslie (2012) against remotely sensed and in situ SST and subsurface ocean temperature observations. The model generally underestimates the hurricane-induced upper-ocean cooling, particularly far from the storm track, as well as the upwelling and downwelling oscillation in the cold wake, compared with observations. Nonetheless, the timing of the model SST cooling is generally accurate (after accounting for along-track timing errors), and the ocean model’s vertical temperature structure is generally in good agreement with observed temperature profiles from airborne expendable bathythermographs.

Corresponding author address: Richard M. Yablonsky, Graduate School of Oceanography, University of Rhode Island, Box 67, 215 South Ferry Rd., Narragansett, RI 02882. E-mail: rmyablon@mail.uri.edu

Abstract

The Princeton Ocean Model for Tropical Cyclones (POM-TC), a version of the three-dimensional primitive equation numerical ocean model known as the Princeton Ocean Model, was the ocean component of NOAA’s operational Hurricane Weather Research and Forecast Model (HWRF) from 2007 to 2013. The coupled HWRF–POM-TC system facilitates accurate tropical cyclone intensity forecasts through proper simulation of the evolving SST field under simulated tropical cyclones. In this study, the 2013 operational version of HWRF is used to analyze the POM-TC ocean temperature response in retrospective HWRF–POM-TC forecasts of Atlantic Hurricanes Earl (2010), Igor (2010), Irene (2011), Isaac (2012), and Leslie (2012) against remotely sensed and in situ SST and subsurface ocean temperature observations. The model generally underestimates the hurricane-induced upper-ocean cooling, particularly far from the storm track, as well as the upwelling and downwelling oscillation in the cold wake, compared with observations. Nonetheless, the timing of the model SST cooling is generally accurate (after accounting for along-track timing errors), and the ocean model’s vertical temperature structure is generally in good agreement with observed temperature profiles from airborne expendable bathythermographs.

Corresponding author address: Richard M. Yablonsky, Graduate School of Oceanography, University of Rhode Island, Box 67, 215 South Ferry Rd., Narragansett, RI 02882. E-mail: rmyablon@mail.uri.edu
Save
  • Avila, L. A., 2002: Best track determination at NHC. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 11C.1. [Available online at https://ams.confex.com/ams/25HURR/techprogram/paper_36320.htm.]

  • Bao, J.-W., Wilczak J. M. , Choi J.-K. , and Kantha L. H. , 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 21902210, doi:10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and Ginis I. , 2000: Real-case simulation of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, doi:10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., Ginis I. , and Kurihara Y. , 1993: Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 24523 263, doi:10.1029/93JD02370.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., Ginis I. , Tuleya R. , Thomas B. , and Marchok T. , 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, doi:10.1175/2007MWR2032.1.

    • Search Google Scholar
    • Export Citation
  • Bernardet, L., and Coauthors, 2015: Community support and transition of research to operations for the Hurricane Weather Research and Forecast Model (HWRF). Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., Duan Y. , and Shay L. K. , 2001: Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci., 58, 154172, doi:10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors, 2009: US GODAE: Global ocean prediction with the Hybrid Coordinate Ocean Model (HYCOM). Oceanography, 22, 6475, doi:10.5670/oceanog.2009.39.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., Price J. F. , Zhao W. , Donelan M. A. , and Walsh E. J. , 2007: The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311317, doi:10.1175/BAMS-88-3-311.

    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, doi:10.1256/qj.05.105.

    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and Smedstad O. M. , 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, S. K. Park and L. Xu, Eds., Springer, 303–343.

  • D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579, doi:10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., DesAutels C. , Holloway C. , and Korty R. , 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Falkovich, A., Ginis I. , and Lord S. , 2005: Ocean data assimilation and initialization procedure for the coupled GFDL/URI hurricane prediction system. J. Atmos. Oceanic Technol., 22, 19181932, doi:10.1175/JTECH1810.1.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., Wentz F. J. , Mears C. A. , and Smith D. K. , 2004: In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res., 109, C04021, doi:10.1029/2003JC002092.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., Meissner T. , and Wentz F. J. , 2010: Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Trans. Geosci. Remote Sens., 48, 10091018, doi:10.1109/TGRS.2009.2030322.

    • Search Google Scholar
    • Export Citation
  • Ginis, I., 2002: Tropical cyclone-ocean interactions. Atmosphere-Ocean Interactions, W. Perrie, Ed., Advances in Fluid Mechanics, Vol. I, WIT Press, 83–114.

  • Ginis, I., Dikinov Kh. Zh. , and Khain A. P. , 1989: A three-dimensional model of the atmosphere and the ocean in the zone of a typhoon. Dokl. Akad. Nauk. SSSR, 307, 333337.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, X., Chang S. W. , Raman S. , Shay L. K. , and Hodur R. , 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 13471365, doi:10.1175/1520-0493(2000)128<1347:TIBHOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, P., Sanford T. B. , and Imberger J. , 2009: Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J. Geophys. Res., 114, C12023, doi:10.1029/2009JC005603.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., and Shay L. K. , 2003: The role of oceanic mesoscale features on the tropical cyclone–induced mixed layer response: A case study. J. Phys. Oceanogr., 33, 649676, doi:10.1175/1520-0485(2003)33<649:TROOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., Shay L. K. , Mariano A. J. , and Black P. G. , 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, doi:10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and Shay L. K. , 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, doi:10.1175/2009MWR2849.1.

    • Search Google Scholar
    • Export Citation
  • Jordi, A., and Wang D.-P. , 2012: sbPOM: A parallel implementation of Princeton Ocean Model. Environ. Modell. Software, 38, 5961, doi:10.1016/j.envsoft.2012.05.013.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., Lengaigne M. , Vialard J. , Madec G. , Menkes C. E. , Vincent E. M. , Jullien S. , and Barnier B. , 2013: Observation-based estimates of surface cooling inhibition by heavy rainfall under tropical cyclones. J. Phys. Oceanogr., 43, 205221, doi:10.1175/JPO-D-12-085.1.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., Barnier B. , Ferry N. , Vialard J. , Menkes C. E. , Lengaigne M. , and Parent L. , 2014: Tropical cyclones in two atmospheric (re)analyses and their response in two oceanic reanalyses. Ocean Modell., 73, 108122, doi:10.1016/j.ocemod.2013.10.007.

    • Search Google Scholar
    • Export Citation
  • Jullien, S., and Coauthors, 2012: Impact of tropical cyclones on the heat budget of the South Pacific Ocean. J. Phys. Oceanogr., 42, 18821906, doi:10.1175/JPO-D-11-0133.1.

    • Search Google Scholar
    • Export Citation
  • Jullien, S., Marchesiello P. , Menkes C. E. , Lefèvre J. , Jourdain N. C. , Samson G. , and Lengaigne M. , 2014: Ocean feedback to tropical cyclones: Climatology and processes. Climate Dyn., 43, 2831–2854, doi:10.1007/s00382-014-2096-6.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., Lozano C. , Tallapragada V. , Iredell D. , Sheinin D. , Tolman H. L. , Gerald V. M. , and Sims J. , 2014: Performance of ocean simulations in the coupled HWRF–HYCOM model. J. Atmos. Oceanic Technol., 31, 545559, doi:10.1175/JTECH-D-13-00013.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., Wu C.-C. , Emanuel K. A. , Lee I.-H. , Wu C.-R. , and Pun I.-F. , 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, doi:10.1175/MWR3005.1.

    • Search Google Scholar
    • Export Citation
  • Liu, B., Liu H. , Xie L. , Guan C. , and Zhao D. , 2011: A coupled atmosphere–wave–ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Mon. Wea. Rev., 139, 132152, doi:10.1175/2010MWR3396.1.

    • Search Google Scholar
    • Export Citation
  • Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13. [Available online at https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm.]

  • Mei, W., and Pasquero C. , 2013: Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate, 26, 37453765, doi:10.1175/JCLI-D-12-00125.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 1991: An equation of state for numerical models of oceans and estuaries. J. Atmos. Oceanic Technol., 8, 609611, doi:10.1175/1520-0426(1991)008<0609:AEOSFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 2004: Users guide for a three-dimensional, primitive equation, numerical ocean model. Program in Atmospheric and Oceanic Sciences, Princeton University, 56 pp.

  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Oey, L., Chang Y.-L. , Lin Y.-C. , Chang M.-C. , Xu F. , and Lu H.-F. , 2013: ATOP—The advanced Taiwan ocean prediction system based on the mpiPOM. Part 1: Model descriptions, analyses and results. Terr. Atmos. Oceanic Sci., 24, 137158, doi:10.3319/TAO.2012.09.12.01(Oc).

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184185, doi:10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and Smith T. M. , 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanabia, E. R., Barrett B. S. , Black P. G. , Chen S. , and Cummings J. A. , 2013: Real-time upper-ocean temperature observations from aircraft during operational hurricane reconnaissance missions: AXBT demonstration project year one results. Wea. Forecasting, 28, 14041422, doi:10.1175/WAF-D-12-00107.1.

    • Search Google Scholar
    • Export Citation
  • Sandery, P. A., Brassington G. B. , Craig A. , and Pugh T. , 2010: Impacts of ocean–atmosphere coupling on tropical cyclone intensity change and ocean prediction in the Australian region. Mon. Wea. Rev., 138, 20742091, doi:10.1175/2010MWR3101.1.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and Emanuel K. A. , 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, doi:10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., Elsberry R. L. , and Black P. G. , 1989: Vertical structure of the ocean current response to a hurricane. J. Phys. Oceanogr., 19, 649669, doi:10.1175/1520-0485(1989)019<0649:VSOTOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with primitive equations. Part I: The basic experiments. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2013: Hurricane Weather Research and Forecasting (HWRF) Model: 2013 scientific documentation. Developmental Testbed Center, 99 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/.]

  • Teague, W. J., Carron M. J. , and Hogan P. J. , 1990: A comparison between the Generalized Digital Environmental Model and Levitus climatologies. J. Geophys. Res., 95, 71677183, doi:10.1029/JC095iC05p07167.

    • Search Google Scholar
    • Export Citation
  • Trahan, S., and Sparling L. , 2012: An analysis of NCEP tropical cyclone vitals and potential effects on forecasting models. Wea. Forecasting, 27, 744756, doi:10.1175/WAF-D-11-00063.1.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., Lengaigne M. , Madec G. , Vialard J. , Samson G. , Jourdain N. C. , Menkes C. E. , and Jullien S. , 2012a: Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C02020, doi:10.1029/2011JC007396.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., Lengaigne M. , Vialard J. , Madec G. , Jourdain N. C. , and Masson S. , 2012b: Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C05023, doi:10.1029/2011JC007705.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., Gentemann C. , Smith D. , and Chelton D. , 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847850, doi:10.1126/science.288.5467.847.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., Lee C.-Y. , and Lin I.-I. , 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 35623578, doi:10.1175/JAS4051.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Wang B. , and Braun S. A. , 2005: Impacts of air–sea interaction on tropical cyclone track and intensity. Mon. Wea. Rev., 133, 32993314, doi:10.1175/MWR3030.1.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and Ginis I. , 2008: Improving the ocean initialization of coupled hurricane–ocean models using feature-based data assimilation. Mon. Wea. Rev., 136, 25922607, doi:10.1175/2007MWR2166.1.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and Ginis I. , 2009: Limitation of one-dimensional ocean models for coupled hurricane–ocean model forecasts. Mon. Wea. Rev., 137, 44104419, doi:10.1175/2009MWR2863.1.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and Ginis I. , 2013: Impact of a warm ocean eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon. Wea. Rev., 141, 9971021, doi:10.1175/MWR-D-12-00248.1.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., Ginis I. , and Thomas B. , 2015: Ocean modeling with flexible initialization for improved coupled tropical cyclone-ocean model prediction. Environ. Modell. Software, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1486 765 64
PDF Downloads 470 67 6