A Semisupervised Robust Hydrometeor Classification Method for Dual-Polarization Radar Applications

Renzo Bechini Colorado State University, Fort Collins, Colorado

Search for other papers by Renzo Bechini in
Current site
Google Scholar
PubMed
Close
and
V. Chandrasekar Colorado State University, Fort Collins, Colorado

Search for other papers by V. Chandrasekar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Most of the recent hydrometeor classification schemes are based on fuzzy logic. When the input radar observations are noisy, the output classification could also be noisy, since the process is bin based and the information from neighboring radar cells is not considered. This paper employs cluster analysis, in combination with fuzzy logic, to improve the hydrometeor classification from dual-polarization radars using a multistep approach. The first step involves a radar-based optimization of an input temperature profile from auxiliary data. Then a first-guess fuzzy logic processing produces the classification to initiate a cluster analysis with contiguity and penalty constraints. The result of the cluster analysis is eventually processed to identify the regions populated with adjacent bins assigned to the same hydrometeor class. Finally, the set of connected regions is passed to the fuzzy logic algorithm for the final classification, exploiting the statistical sample composed by the distribution of the dual-polarization and temperature observations within the regions. Example applications to radar in different environments and meteorological situations, and using different operating frequency bands—namely, S, C, and X bands—are shown. The results are discussed with specific attention to the robustness of the method and the segregation of the data space. Furthermore, the sensitivity to noise and bias in the input variables is also analyzed.

Corresponding author address: Renzo Bechini, Department of Electrical and Computer Engineering, Colorado State University, 1373 Campus Delivery, Fort Collins, CO 80523. E-mail: rbechini@engr.colostate.edu

Abstract

Most of the recent hydrometeor classification schemes are based on fuzzy logic. When the input radar observations are noisy, the output classification could also be noisy, since the process is bin based and the information from neighboring radar cells is not considered. This paper employs cluster analysis, in combination with fuzzy logic, to improve the hydrometeor classification from dual-polarization radars using a multistep approach. The first step involves a radar-based optimization of an input temperature profile from auxiliary data. Then a first-guess fuzzy logic processing produces the classification to initiate a cluster analysis with contiguity and penalty constraints. The result of the cluster analysis is eventually processed to identify the regions populated with adjacent bins assigned to the same hydrometeor class. Finally, the set of connected regions is passed to the fuzzy logic algorithm for the final classification, exploiting the statistical sample composed by the distribution of the dual-polarization and temperature observations within the regions. Example applications to radar in different environments and meteorological situations, and using different operating frequency bands—namely, S, C, and X bands—are shown. The results are discussed with specific attention to the robustness of the method and the segregation of the data space. Furthermore, the sensitivity to noise and bias in the input variables is also analyzed.

Corresponding author address: Renzo Bechini, Department of Electrical and Computer Engineering, Colorado State University, 1373 Campus Delivery, Fort Collins, CO 80523. E-mail: rbechini@engr.colostate.edu
Save
  • Aggarwal, C. C., and Reddy C. K. , Eds., 2013: Data Clustering: Algorithms and Applications. Chapman and Hall/CRC, 652 pp.

  • Al-Sakka, H., Boumahmoud A.-A. , Fradon B. , Frasier S. J. , and Tabary P. , 2013: A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars. J. Appl. Meteor. Climatol., 52, 23282344, doi:10.1175/JAMC-D-12-0236.1.

    • Search Google Scholar
    • Export Citation
  • Baldini, L., Gorgucci E. , Chandrasekar V. , and Peterson W. , 2005: Implementations of CSU hydrometeor classification scheme for C-band polarimetric radars. 32nd Conf. on Radar Meteorology, Albuquerque, N. M., Amer. Meteor. Soc., P11.4. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_95865.htm.]

  • Bechini, R., and Cremonini R. , 2002: The weather radar system of north-western Italy: An advanced tool for meteorological surveillance. Proceedings of the Second European Conference on Radar in Meteorology and Hydrology, Copernicus, 400404.

  • Bechini, R., Baldini L. , and Chandrasekar V. , 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, doi:10.1175/JAMC-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., Vivekanandan J. , Tuttle J. D. , and Kessinger C. J. , 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143, doi:10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications.Cambridge University Press, 648 pp.

  • Bringi, V. N., Chandrasekar V. , Balakrishnan N. , and Zrnić D. S. , 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, doi:10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and Rutledge S. A. , 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 3364, doi:10.1007/BF01032000.

    • Search Google Scholar
    • Export Citation
  • Caylor, I. J., and Chandrasekar V. , 1996: Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar. IEEE Trans. Geosci. Remote Sens., 34, 847858, doi:10.1109/36.508402.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Keränen R. , Lim S. , and Moisseev D. , 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97111, doi:10.1016/j.atmosres.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • Conway, J. W., and Zrnić D. S. , 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121, 25112528, doi:10.1175/1520-0493(1993)121<2511:ASOEPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • CSU–CHILL, cited 2014: National Weather Radar facility. [Available online at http://www.chill.colostate.edu.]

  • Davies, D. L., and Bouldin D. W. , 1979: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-1, 224227, doi:10.1109/TPAMI.1979.4766909.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., and Rutledge S. A. , 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, doi:10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., Rutledge S. A. , Lim S. , Chandrasekar V. , and Thurai M. , 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52, 21622186, doi:10.1175/JAMC-D-12-0275.1.

    • Search Google Scholar
    • Export Citation
  • Fisher, R., Perkins S. , Walker A. , and Wolfart E. , cited 2003: Connected components labeling. [Available online at http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm.]

  • Giangrande, S. E., Krause J. M. , and Ryzhkov A. V. , 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor., 47, 13541364, doi:10.1175/2007JAMC1634.1.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, R., and Woods R. , Eds., 2002: Digital Image Processing. 2nd ed. Prentice Hall, 793 pp.

  • Gourley, J. J., Tabary P. , and du Chatelet J. P. , 2007: A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations. J. Atmos. Oceanic Technol., 24, 14391451, doi:10.1175/JTECH2035.1.

    • Search Google Scholar
    • Export Citation
  • Hendry, A., and McCormick G. C. , 1976: Radar observations of the alignment of precipitation particles by electrostatic fields in thunderstorms. J. Geophys. Res., 81, 53535357, doi:10.1029/JC081i030p05353.

    • Search Google Scholar
    • Export Citation
  • Hooke, R., and Jeeves T. , 1961: Direct search” solution of numerical and statistical problems. J. Assoc. Comput. Mach., 8, 212229, doi:10.1145/321062.321069.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., and Bringi V. N. , 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648, doi:10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Junyent, F., Chandrasekar V. , McLaughlin D. , Insanic E. , and Bharadwaj N. , 2010: The CASA Integrated Project 1 networked radar system. J. Atmos. Oceanic Technol., 27, 6178, doi:10.1175/2009JTECHA1296.1.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and Rutledge S. A. , 2011: S-band dual polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Search Google Scholar
    • Export Citation
  • King, W. D., 1984: Air flow and particle trajectories around aircraft fuselages. I: Theory. J. Atmos. Oceanic Technol., 1, 513, doi:10.1175/1520-0426(1984)001<0005:AFAPTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, W. D., 1986: Air flow and particle trajectories around aircraft fuselages. IV: Orientation of ice crystals. J. Atmos. Oceanic Technol., 3, 433439, doi:10.1175/1520-0426(1986)003<0433:AFAPTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., Emery E. , and Creelman K. , 2013: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690708, doi:10.1175/JTECH-D-12-00142.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Rabin R. , and DeBrunner V. , 2001: Segmenting radar reflectivity data using texture. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., P2.2. [Available online at https://ams.confex.com/ams/30radar/techprogram/paper_21594.htm.]

  • Lim, S., Chandrasekar V. , and Bringi V. N. , 2005: Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens.,43, 792801, doi:10.1109/TGRS.2004.843077.

    • Search Google Scholar
    • Export Citation
  • Lim, S., Cifelli R. , Chandrasekar V. , and Matrosov S. Y. , 2013: Precipitation classification and quantification using X-band dual-polarization weather radar: Application in the hydrometeorology testbed. J. Atmos. Oceanic Technol., 30, 21082120, doi:10.1175/JTECH-D-12-00123.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and Chandrasekar V. , 1998: Classification of hydrometeor type based on multiparameter radar measurements. Preprints, Int. Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 253–256.

  • Liu, H., and Chandrasekar V. , 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, doi:10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahalanobis, P., 1936: On the generalized distance in statistics. Proc. Natl. Inst. Sci. India, 2, 4955.

  • Marzano, F., Scaranari D. , and Vulpiani G. , 2007: Supervised fuzzy-logic classification of hydrometeors using C-band weather radars. IEEE Trans. Geosci. Remote Sens.,45, 37843799, doi:10.1109/TGRS.2007.903399.

    • Search Google Scholar
    • Export Citation
  • Openshaw, S., 1983: The Modifiable Areal Unit Problem. Concepts and Techniques in Modern Geography Series, Vol. 38, Geo Books, 40 pp.

  • Otto, T., and Russchenberg H. W. J. , 2011: Estimation of specific differential phase and differential backscatter phase from polarimetric weather radar measurements of rain. IEEE Geosci. Remote Sens. Lett., 8, 988992, doi:10.1109/LGRS.2011.2145354.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., Ryzhkov A. V. , Zrnić D. S. , and Kim K.-E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Parzen, E., 1962: On estimation of a probability density function and mode. Ann. Math. Stat., 33, 10651076, doi:10.1214/aoms/1177704472.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and Zrnić D. S. , 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240, doi:10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., Grazioli J. , and Berne A. , 2014: Improved estimation of the specific differential phase shift using a compilation of Kalman filter ensembles. IEEE Trans. Geosci. Remote Sens., 52, 51375149, doi:10.1109/TGRS.2013.2287017.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., Zrnić D. S. , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Testud, J., Bouar E. L. , Obligis E. , and Ali-Mehenni M. , 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, doi:10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Ellis S. M. , Oye R. , Zrnić D. S. , Ryzhkov A. V. , and Straka J. , 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. T., and Chandrasekar V. , 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578, doi:10.1175/2009JTECHA1358.1.

    • Search Google Scholar
    • Export Citation
  • Wolberg, G., 1998: Cubic spline interpolation: A review. Columbia University Computer Science Tech. Rep. CUCS-389-88, 14 pp. [Available online at http://hdl.handle.net/10022/AC:P:12065.]

  • Zrnić, D. S., Ryzhkov A. , Straka J. , Liu Y. , and Vivekanandan J. , 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892913, doi:10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2126 777 40
PDF Downloads 1173 235 10