Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping

Clement Ubelmann Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Clement Ubelmann in
Current site
Google Scholar
PubMed
Close
,
Patrice Klein Laboratoire de Physique des Océans, IFREMER, Plouzané, France

Search for other papers by Patrice Klein in
Current site
Google Scholar
PubMed
Close
, and
Lee-Lueng Fu Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Lee-Lueng Fu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many issues may challenge standard interpolation techniques to produce high-resolution gridded maps of sea surface height in the context of future missions like Surface Water and Ocean Topography (SWOT). The present study proposes a new method to address these challenges. Based on the conservation of potential vorticity, the method provides a simple dynamic approach to interpolation through temporal gaps between high spatial resolution observations. For gaps shorter than 20 days, the dynamic interpolation is extremely efficient and allows for the reconstruction of the time evolution of small mesoscale eddies (below 100 km) that would be smoothed out by conventional methods based on optimal mapping. Such a simple approach offers some perspectives for developing high-level products from high-resolution altimetry data in the future.

Corresponding author address: Clement Ubelmann, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: clement.ubelmann@jpl.nasa.gov

Abstract

Many issues may challenge standard interpolation techniques to produce high-resolution gridded maps of sea surface height in the context of future missions like Surface Water and Ocean Topography (SWOT). The present study proposes a new method to address these challenges. Based on the conservation of potential vorticity, the method provides a simple dynamic approach to interpolation through temporal gaps between high spatial resolution observations. For gaps shorter than 20 days, the dynamic interpolation is extremely efficient and allows for the reconstruction of the time evolution of small mesoscale eddies (below 100 km) that would be smoothed out by conventional methods based on optimal mapping. Such a simple approach offers some perspectives for developing high-level products from high-resolution altimetry data in the future.

Corresponding author address: Clement Ubelmann, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: clement.ubelmann@jpl.nasa.gov
Save
  • Bretherton, F. P., Davis R. E. , and Fandry C. B. , 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr.,23,559–582, doi:10.1016/0011-7471(76)90001-2.

  • Capet, X., McWilliams J. C. , Molemaker M. J. , and Shchepetkin A. F. , 2008: Mesoscale to submesoscale transition in the California Current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr.,38,29–43, doi:10.1175/2007JPO3671.1.

  • Chavanne, C. P., and Klein P. , 2010: Can oceanic submesoscale processes be observed with satellite altimetry? Geophys. Res. Lett., 37, L22602, doi:10.1029/2010GL045057.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., deSzoeke R. A. , Schlax M. G. , El Naggar K. , and Siwertz N. , 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr.,28,433–460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

  • Ducet, N., and Le Traon P.-Y. , 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 477–19 498, doi:10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Durand, M., Fu L.-L. , Lettenmaier D. , Alsdorf D. , Rodriguez E. , and Esteban-Fernandez D. , 2010: The Surface Water and Ocean Topography Mission: Observing terrestrial surface water and oceanic submesoscale eddies. Proc. IEEE, 98, 766–779, doi:10.1109/JPROC.2010.2043031.

    • Search Google Scholar
    • Export Citation
  • Dussurget, R., Birol F. , Morrow R. , and De Mey P. , 2011: Fine resolution altimetry data for a regional application in the Bay of Biscay. Mar. Geod., 34, 447–476, doi:10.1080/01490419.2011.584835.

    • Search Google Scholar
    • Export Citation
  • Escudier, R., Bouffard J. , Pascual A. , Poulain P.-M. , and Pujol M.-I. , 2013: Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea. Geophys. Res. Lett., 40, 2148–2153, doi:10.1002/grl.50324.

    • Search Google Scholar
    • Export Citation
  • Fu, L. L., and Flierl G. R. , 1980: Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dyn. Atmos. Oceans, 4, 219–246, doi:10.1016/0377-0265(80)90029-9.

    • Search Google Scholar
    • Export Citation
  • Fu, L. L., and Ferrari R. , 2008: Observing oceanic submesoscale processes from space. Eos, Trans. Amer. Geophys. Union, 89, 488, doi:10.1029/2008EO480003.

    • Search Google Scholar
    • Export Citation
  • Hua, B. L., 1994: Skewness of the generalized centrifugal force divergence for a joint normal distribution of strain and vorticity components. Phys. Fluids, 6A, 3200–3202, doi:10.1063/1.868101.

    • Search Google Scholar
    • Export Citation
  • Hua, B. L., and Haidvogel D. B. , 1986: Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci., 43, 2923–2936, doi:10.1175/1520-0469(1986)043<2923:NSOTVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, P., and Hua B. L. , 1990: The mesoscale variability of the sea surface temperature: An analytical and numerical model. J. Mar. Res.,48, 729–763.

  • Klein, P., Lapeyre G. , and Large W. G. , 2004: Wind ringing of the ocean in presence of mesoscale eddies. Geophys. Res. Lett.,31, L15306, doi:10.1029/2004GL020274.

  • Klein, P., Hua B. L. , Lapeyre G. , Capet X. , Le Gentil S. , and Sasaki H. , 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 1748–1763, doi:10.1175/2007JPO3773.1.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and Klein P. , 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165–176, doi:10.1175/JPO2840.1.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P.-Y., and Dibarboure G. , 1999: Mesoscale mapping capabilities of multiple-satellite altimeter missions. J. Atmos. Oceanic Technol., 16, 1208–1223, doi:10.1175/1520-0426(1999)016<1208:MMCOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P.-Y., Nadal F. , and Ducet N. , 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol.,15,522–534, doi:10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

  • Le Traon, P.-Y., Klein P. , Hua B.-L. , and Dibarboure G. , 2008: Do altimeter wavenumber spectra agree with the interior or surface quasigeostrophic theory? J. Phys. Oceanogr., 38, 1137–1142, doi:10.1175/2007JPO3806.1.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and Elipot S. , 2010: Surface drifter pair spreading in the North Atlantic. J. Geophys. Res., 115, C12017, doi:10.1029/2010JC006338.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1984: The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 21–43, doi:10.1017/S0022112084001750.

    • Search Google Scholar
    • Export Citation
  • Mcwilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165–182, doi:10.1029/RG023i002p00165.

  • Morrow, R., and Le Traon P.-Y. , 2012: Recent advances in observing mesoscale ocean dynamics with satellite altimetry. Adv. Space Res., 50, 1062–1076, doi:10.1016/j.asr.2011.09.033.

    • Search Google Scholar
    • Export Citation
  • Poje, A., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA,111, 12 693–12 698, doi:10.1073/pnas.1402452111.

  • Ponte, A., and Klein P. , 2013: Reconstruction of the upper ocean 3D dynamics from high-resolution sea surface height. Ocean Dyn., 63, 777–791, doi:10.1007/s10236-013-0611-7.

    • Search Google Scholar
    • Export Citation
  • Ponte, A., Klein P. , Capet X. , Le Traon P.-Y. , Chapron B. , and Lherminier P. , 2013: Diagnosing surface mixed layer dynamics from high-resolution satellite observations: Numerical insights. J. Phys. Oceanogr.,43,1345–1355, doi:10.1175/JPO-D-12-0136.1.

  • Pujol, M.-I., Dibarboure G. , Le Traon P.-Y. , and Klein P. , 2012: Using high-resolution altimetry to observe mesoscale signals. J. Atmos. Oceanic Technol., 29, 1409–1416, doi:10.1175/JTECH-D-12-00032.1.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech.,69, 417–443, doi:10.1017/S0022112075001504.

  • Richman, J. G., Arbic B. K. , Shriver J. F. , Metzger E. J. , and Wallcraft A. J. , 2012: Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides. J. Geophys. Res., 117, C12012, doi:10.1029/2012JC008364.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., and Klein P. , 2010: Cyclone-anticyclone asymmetry in geophysical turbulence. Phys. Rev. Lett., 104, 218501, doi:10.1103/PhysRevLett.104.218501.

    • Search Google Scholar
    • Export Citation
  • Shafer Smith, K. S., and Vallis G. K. , 2001: The scales and equilibration of midocean eddies: Freely evolving flow. J. Phys. Oceanogr.,31, 554–571, doi:10.1175/1520-0485(2001)031<0554:TSAEOM>2.0.CO;2.

  • Shchepetkin, A. F., and McWilliams J. C. , 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell.,9,347–404, doi:10.1016/j.ocemod.2004.08.002.

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

  • Xu, Y., and Fu L.-L. , 2012: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J. Phys. Oceanogr., 42, 2229–2233, doi:10.1175/JPO-D-12-0106.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2405 1251 62
PDF Downloads 1171 259 12