Evaluation of Drifter Salinities in the Subtropical North Atlantic

Verena Hormann Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Verena Hormann in
Current site
Google Scholar
PubMed
Close
,
Luca R. Centurioni Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Luca R. Centurioni in
Current site
Google Scholar
PubMed
Close
, and
Gilles Reverdin Sorbonne Universités, LOCEAN, CNRS/UPMC/IRD/MNHN, Paris, France

Search for other papers by Gilles Reverdin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Salinity measurements from drifters constitute an important in situ dataset for the calibration and validation of the sea surface salinity satellite missions. A total of 114 satellite-tracked salinity drifters were deployed within the framework of the first Salinity Processes in the Upper Ocean Regional Study (SPURS) experiment in the subtropical North Atlantic focusing on the period August 2012–April 2014. In this study, a subset of 83 drifters, which provided useful salinity measurements in the central SPURS region from a few weeks to more than one year, is evaluated and an ad hoc quality-control procedure based on previously published work and the new observations is described. It was found that the sampling algorithm of the drifters introduces a predominantly fresh bias in the noise level of the salinity data, probably caused by the presence of air bubbles within the measuring cell. Since such noise is difficult to eliminate using statistical methods, extensive editing was done manually instead. Such quality-control procedures cannot be routinely applied to the real-time data stream from the drifters. Therefore, a revision of the sampling algorithm of the drifter’s salinity sensor is needed. Comparisons of the drifter’s salinity measurements with independent datasets further indicate that the sensor can provide reliable observations for up to one year. Finally, little evidence was found that the quality of the drifter’s salinity measurements depends on the presence of the drogue.

Corresponding author address: Verena Hormann, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0213. E-mail: vhormann@ucsd.edu

Abstract

Salinity measurements from drifters constitute an important in situ dataset for the calibration and validation of the sea surface salinity satellite missions. A total of 114 satellite-tracked salinity drifters were deployed within the framework of the first Salinity Processes in the Upper Ocean Regional Study (SPURS) experiment in the subtropical North Atlantic focusing on the period August 2012–April 2014. In this study, a subset of 83 drifters, which provided useful salinity measurements in the central SPURS region from a few weeks to more than one year, is evaluated and an ad hoc quality-control procedure based on previously published work and the new observations is described. It was found that the sampling algorithm of the drifters introduces a predominantly fresh bias in the noise level of the salinity data, probably caused by the presence of air bubbles within the measuring cell. Since such noise is difficult to eliminate using statistical methods, extensive editing was done manually instead. Such quality-control procedures cannot be routinely applied to the real-time data stream from the drifters. Therefore, a revision of the sampling algorithm of the drifter’s salinity sensor is needed. Comparisons of the drifter’s salinity measurements with independent datasets further indicate that the sensor can provide reliable observations for up to one year. Finally, little evidence was found that the quality of the drifter’s salinity measurements depends on the presence of the drogue.

Corresponding author address: Verena Hormann, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0213. E-mail: vhormann@ucsd.edu
Save
  • Anderson, J. E., and Riser S. C. , 2014: Near-surface variability of temperature and salinity in the near-tropical ocean: Observations from profiling floats. J. Geophys. Res. Oceans, 119, 74337448, doi:10.1002/2014JC010112.

    • Search Google Scholar
    • Export Citation
  • Boutin, J., Martin N. , Reverdin G. , Morisset S. , Yin X. , Centurioni L. , and Reul N. , 2014: Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations. J. Geophys. Res. Oceans,119, 55335545, doi:10.1002/2014JC010070.

    • Search Google Scholar
    • Export Citation
  • Busecke, J., Gordon A. L. , Li Z. , Bingham F. M. , and Font J. , 2014: Subtropical surface layer salinity budget and the role of mesoscale turbulence. J. Geophys. Res. Oceans, 119, 41244140, doi:10.1002/2013JC009715.

    • Search Google Scholar
    • Export Citation
  • Drucker, R., and Riser S. C. , 2014: Validation of Aquarius sea surface salinity with Argo: Analysis of error due to depth of measurement and vertical salinity stratification. J. Geophys. Res. Oceans, 119, 46264637, doi:10.1002/2014JC010045.

    • Search Google Scholar
    • Export Citation
  • Font, J., and Coauthors, 2010: SMOS: The challenging sea surface salinity measurement from space. Proc. IEEE, 98, 649665, doi:10.1109/JPROC.2009.2033096.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and Giulivi C. F. , 2014: Ocean eddy freshwater flux convergence into the North Atlantic subtropics. J. Geophys. Res. Oceans, 119, 33273335, doi:10.1002/2013JC009596.

    • Search Google Scholar
    • Export Citation
  • Henocq, C., Boutin J. , Petitcolin F. , Reverdin G. , Arnault S. , and Lattes P. , 2010: Vertical variability of near-surface salinity in the tropics: Consequences for L-band radiometer calibration and validation. J. Atmos. Oceanic Technol., 27, 192209, doi:10.1175/2009JTECHO670.1.

    • Search Google Scholar
    • Export Citation
  • Hernandez, O., Boutin J. , Kolodziejczyk N. , Reverdin G. , Martin N. , Gaillard F. , Reul N. , and Vergely J. L. , 2015: SMOS salinity in the subtropical North Atlantic salinity maximum: 1: Comparison with Aquarius and in situ salinity. J. Geophys. Res. Oceans, doi:10.1002/2013JC009610, in press.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., and Coauthors, 2008: The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanography, 21, 6881, doi:10.5670/oceanog.2008.68.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., and Coauthors, 2013: Aquarius salinity validation analysis. Data Version 2.0, Aquarius Project Doc. AQ-014-PS-0016, 36 pp. [Available online at ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/docs/v2/AQ-014-PS-0016_AquariusSalinityDataValidationAnalysis_DatasetVersion2.0.pdf.]

  • Lee, T., Lagerloef G. , Gierach M. M. , Kao H.-Y. , Yueh S. , and Dohan K. , 2012: Aquarius reveals salinity structure of tropical instability waves. Geophys. Res. Lett., 39, L12610, doi:10.1029/2012GL052232.

    • Search Google Scholar
    • Export Citation
  • Moisan, J. R., and Niiler P. P. , 1998: The seasonal heat budget of the North Pacific: Net heat flux and heat storage rates (1950-1990). J. Phys. Oceanogr., 28, 401421, doi:10.1175/1520-0485(1998)028<0401:TSHBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., Blouch P. , Boutin J. , Niiler P. P. , Rolland J. , Scuba W. , Lourenco A. , and Rios A. F. , 2007: Surface salinity measurements—COSMOS 2005 experiment in the Bay of Biscay. J. Atmos. Oceanic Technol., 24, 16431654, doi:10.1175/JTECH2079.1.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., Morisset S. , Boutin J. , and Martin N. , 2012: Rain-induced variability of near-surface T and S from drifter data. J. Geophys. Res., 117, C02032, doi:10.1029/2011JC007549.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., and Coauthors, 2014: Validation of salinity data from surface drifters. J. Atmos. Oceanic Technol., 31, 967983, doi:10.1175/JTECH-D-13-00158.1.

    • Search Google Scholar
    • Export Citation
  • Riser, S. C., Ren L. , and Wong A. , 2008: Salinity in Argo: A modern view of a changing ocean. Oceanography, 21, 5667, doi:10.5670/oceanog.2008.67.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21, 1219, doi:10.5670/oceanog.2008.63.

  • Schmitt, R. W., Bogden P. S. , and Dorman C. E. , 1989: Evaporation minus precipitation and density fluxes for the North Atlantic. J. Phys. Oceanogr., 19, 12081221, doi:10.1175/1520-0485(1989)019<1208:EMPADF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wong, A., Keeley R. , Carval T. , and the Argo Data Management Team, 2014: Argo quality control manual. Version 2.9.1, Argo, 56 pp., doi:10.13155/33951.

  • Yu, L., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res., 116, C10025, doi:10.1029/2010JC006937.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1096 607 42
PDF Downloads 227 58 2